Explanation-based Graph Neural Networks for Graph Classification

被引:0
|
作者
Seo, Sangwoo [1 ]
Jung, Seungjun [1 ]
Kim, Changick [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Sch Elect Engn, 291 Daehak Ro, Daejeon 34141, South Korea
关键词
D O I
10.1109/ICPR56361.2022.9956478
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph Neural Network models can be used to quickly analyze interactions between multiple data expressed in a graph structure, with high accuracy. Previous studies accurately extract subgraphs which have a significant influence on the whole graph, providing accurate explanations for predictions of GNN. We noted that explanation components could help improve classification performance as unique representations of each class. Therefore, we suggest the GNN performance can be further improved by using explanation components. In this paper, we propose an Explanation-Based Graph Neural Networks (EBGNN) that utilizes contrastive learning at the instance level, by applying explanation components. In EBGNN, the explanation components ensure similarity for instances within the same class, and promote separability for instances in different classes. Finally, we conducted an evaluation on five benchmark datasets (MUTAG, IMDB-BINARY, PROTEINS, NCI1, and DD). Our experiment showed a significant increase in graph classification performance compared to state-of-the-art methods.
引用
收藏
页码:2836 / 2842
页数:7
相关论文
共 50 条
  • [31] Quantized Graph Neural Networks for Image Classification
    Xu, Xinbiao
    Ma, Liyan
    Zeng, Tieyong
    Huang, Qinghua
    MATHEMATICS, 2023, 11 (24)
  • [32] A comparison of graph neural networks for malware classification
    Vrinda Malhotra
    Katerina Potika
    Mark Stamp
    Journal of Computer Virology and Hacking Techniques, 2024, 20 : 53 - 69
  • [33] On Calibration of Graph Neural Networks for Node Classification
    Liu, Tong
    Liu, Yushan
    Hildebrandt, Marcel
    Joblin, Mitchell
    Li, Hang
    Tresp, Volker
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [34] Ensembling Graph Neural Networks for Node Classification
    Lin, Ke-Ao
    Xie, Xiao-Zhu
    Weng, Wei
    Chen, Yong
    Journal of Network Intelligence, 2024, 9 (02): : 804 - 818
  • [35] Graph neural networks for text classification: a survey
    Wang, Kunze
    Ding, Yihao
    Han, Soyeon Caren
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (08)
  • [36] Graph Neural Networks for IceCube Signal Classification
    Choma, Nicholas
    Monti, Federico
    Gerhardt, Lisa
    Palczewski, Tomasz
    Ronaghi, Zahra
    Prabhat
    Bhimji, Wahid
    Bronstein, Michael M.
    Klein, Spencer R.
    Bruna, Joan
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 386 - 391
  • [37] Using Graph Neural Networks for the Detection and Explanation of Network Intrusions
    Baahmed, Ahmed Rafik El-Mehdi
    Andresini, Giuseppina
    Robardet, Celine
    Appice, Annalisa
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT III, 2025, 2135 : 201 - 216
  • [38] Differentially private graph neural networks for graph classification and its adaptive optimization
    Li, Yong
    Song, Xiao
    Gong, Kaiqi
    Liu, Songsong
    Li, Wenxin
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 263
  • [39] Frequency Domain-Oriented Complex Graph Neural Networks for Graph Classification
    Liu, Youfa
    Du, Bo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (02) : 2733 - 2746
  • [40] Knowledge Graph Integrated Graph Neural Networks for Chinese Medical Text Classification
    Nankai University, College of Software, Tianjin, China
    不详
    Proc. - IEEE Int. Conf. Bioinform. Biomed., BIBM, 1600, (682-687):