Algebras of Distributions of Binary Isolating Formulas for Quite o-Minimal Theories

被引:15
作者
Emel'yanov, D. Yu. [1 ,2 ]
Kulpeshov, B. Sh. [2 ,3 ,4 ]
Sudoplatov, S. V. [1 ,2 ,5 ,6 ]
机构
[1] Novosibirsk State Tech Univ, Pr Marksa 20, Novosibirsk 630073, Russia
[2] Minist Educ & Sci RK, Inst Math & Math Modeling, Ul Pushkina 125, Alma Ata 050010, Kazakhstan
[3] Int Informat Technol Univ, Manas Str 34-1, Alma Ata 050040, Kazakhstan
[4] Kazkh British Tech Univ, Ul Tole bi 59, Alma Ata 050000, Kazakhstan
[5] Sobolev Inst Math, Pr Akad Koptyuga 4, Novosibirsk 630090, Russia
[6] Novosibirsk State Univ, Ul Pirogova 1, Novosibirsk 630090, Russia
关键词
quite o-minimal theory; countable model; convexity rank; algebras of distributions of binary isolating formulas; generalized commutative monoid;
D O I
10.1007/s10469-019-09515-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Algebras of distributions of binary isolating formulas over a type for quite o-minimal theories with nonmaximal number of countable models are described. It is proved that an isomorphism of these algebras for two 1-types is characterized by the coincidence of convexity ranks and also by simultaneous satisfaction of isolation, quasirationality, or irrationality of those types. It is shown that for quite o-minimal theories with nonmaximum many countable models, every algebra of distributions of binary isolating formulas over a pair of nonweakly orthogonal types is a generalized commutative monoid.
引用
收藏
页码:429 / 444
页数:16
相关论文
共 11 条
[1]  
Baikalova KA, 2018, IZV VYSSH UCH ZAV MA, V4, P3
[2]   Expansion of a model of a weakly o-minimal theory by a family of unary predicates [J].
Baizhanov, BS .
JOURNAL OF SYMBOLIC LOGIC, 2001, 66 (03) :1382-1414
[3]   ALGEBRAS OF DISTRIBUTIONS FOR BINARY FORMULAS IN COUNTABLY CATEGORICAL WEAKLY o-MINIMAL STRUCTURES [J].
Emel'yanov, D. Yu. ;
Kulpeshov, B. Sh. ;
Sudoplatov, S. V. .
ALGEBRA AND LOGIC, 2017, 56 (01) :13-36
[4]   Vaught's conjecture for quite o-minimal theories [J].
Kulpeshov, B. Sh. ;
Sudoplatov, S. V. .
ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (01) :129-149
[5]  
Kulpeshov B.Sh., 2011, MAT, V11, P45
[6]  
Kulpeshov B. Sh., 2003, IZV NATS AKAD NAU FM, P26
[7]   Weakly o-minimal structures and some of their properties [J].
Kulpeshov, BS .
JOURNAL OF SYMBOLIC LOGIC, 1998, 63 (04) :1511-1528
[8]   Weakly o-minimal structures and real closed fields [J].
Macpherson, D ;
Marker, D ;
Steinhorn, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5435-5483
[9]   VAUGHT CONJECTURE FOR ORTHO-MINIMAL THEORIES [J].
MAYER, LL .
JOURNAL OF SYMBOLIC LOGIC, 1988, 53 (01) :146-159
[10]  
Shulepov IV, 2014, SIB ELECTRON MATH RE, V11, P380