Towards flexible solid-state supercapacitors for smart and wearable electronics

被引:1477
作者
Dubal, Deepak P. [1 ,2 ,3 ]
Chodankar, Nilesh R. [4 ]
Kim, Do-Heyoung [4 ]
Gomez-Romero, Pedro [2 ,3 ]
机构
[1] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[2] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain
[3] Barcelona Inst Sci & Technol, Campus UAB, Barcelona 08193, Spain
[4] Chonnam Natl Univ, Sch Chem Engn, Gwangju 500757, South Korea
基金
新加坡国家研究基金会;
关键词
GEL POLYMER ELECTROLYTE; REDUCED GRAPHENE OXIDE; DOUBLE-LAYER CAPACITOR; METAL-ORGANIC FRAMEWORK; HIGH-ENERGY-DENSITY; HIGH-PERFORMANCE SUPERCAPACITORS; LITHIUM-ION BATTERIES; ULTRA-HIGH RATE; SHAPED MICRO-SUPERCAPACITOR; CHEMICAL-VAPOR-DEPOSITION;
D O I
10.1039/c7cs00505a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Flexible solid-state supercapacitors (FSSCs) are frontrunners in energy storage device technology and have attracted extensive attention owing to recent significant breakthroughs in modern wearable electronics. In this study, we review the state-of-the-art advancements in FSSCs to provide new insights on mechanisms, emerging electrode materials, flexible gel electrolytes and novel cell designs. The review begins with a brief introduction on the fundamental understanding of charge storage mechanisms based on the structural properties of electrode materials. The next sections briefly summarise the latest progress in flexible electrodes (i.e., freestanding and substrate-supported, including textile, paper, metal foil/wire and polymer-based substrates) and flexible gel electrolytes (i.e., aqueous, organic, ionic liquids and redox-active gels). Subsequently, a comprehensive summary of FSSC cell designs introduces some emerging electrode materials, including MXenes, metal nitrides, metal-organic frameworks (MOFs), polyoxometalates (POMs) and black phosphorus. Some potential practical applications, such as the development of piezoelectric, photo-, shape-memory, self-healing, electrochromic and integrated sensor-supercapacitors are also discussed. The final section highlights current challenges and future perspectives on research in this thriving field.
引用
收藏
页码:2065 / 2129
页数:65
相关论文
共 675 条
[81]  
Conway B.E., 1999, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
[82]   Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors [J].
Cuentas-Gallegos, AK ;
Lira-Cantu, M ;
Casañ-Pastor, N ;
Gómez-Romero, P .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (07) :1125-1133
[83]  
Cusick RD, 2012, SCIENCE, V335, P1474, DOI [10.1126/science.1218781, 10.1126/science.1219330]
[84]   Vapor-Phase Polymerization of Nanofibrillar Poly(3,4-ethylenedioxythiophene) for Supercapacitors [J].
D'Arcy, Julio M. ;
El-Kady, Maher F. ;
Khine, Pwint P. ;
Zhang, Linghong ;
Lee, Sun Hwa ;
Davis, Nicole R. ;
Liu, David S. ;
Yeung, Michael T. ;
Kim, Sung Yeol ;
Turner, Christopher L. ;
Lech, Andrew T. ;
Hammond, Paula T. ;
Kaner, Richard B. .
ACS NANO, 2014, 8 (02) :1500-1510
[85]   Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor [J].
Dai, Shuge ;
Xu, Weina ;
Xi, Yi ;
Wang, Mingjun ;
Gu, Xiao ;
Guo, Donglin ;
Hu, Chenguo .
NANO ENERGY, 2016, 19 :363-372
[86]   Capacitive Bioanodes Enable Renewable Energy Storage in Microbial Fuel Cells [J].
Deeke, Alexandra ;
Sleutels, Tom H. J. A. ;
Hamelers, Hubertus V. M. ;
Buisman, Cees J. N. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (06) :3554-3560
[87]  
DeLongchamp D, 2001, ADV MATER, V13, P1455, DOI 10.1002/1521-4095(200110)13:19<1455::AID-ADMA1455>3.0.CO
[88]  
2-7
[89]   A Shape-Memory Supercapacitor Fiber [J].
Deng, Jue ;
Zhang, Ye ;
Zhao, Yang ;
Chen, Peining ;
Cheng, Xunliang ;
Peng, Huisheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (51) :15419-15423
[90]  
Deschamps M, 2013, NAT MATER, V12, P351, DOI [10.1038/NMAT3567, 10.1038/nmat3567]