Understanding Partial Multi-label Learning via Mutual Information

被引:0
作者
Gong, Xiuwen [1 ,2 ]
Yuan, Dong [1 ]
Bao, Wei [1 ]
机构
[1] Univ Sydney, Fac Engn, Sydney, NSW, Australia
[2] Hunan Huishiwei Intelligent Technol Co Ltd, Changsha, Peoples R China
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021) | 2021年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To deal with ambiguities in partial multi-label learning (PML), state-of-the-art methods perform disambiguation by identifying ground-truth labels directly. However, there is an essential question:"Can the ground-truth labels be identified precisely?". If yes, "How can the ground-truth labels be found?". This paper provides affirmative answers to these questions. Instead of adopting hand-made heuristic strategy, we propose a novel Mutual Information Label Identification for Partial Multi-Label Learning (MILI-PML), which is derived from a clear probabilistic formulation and could be easily interpreted theoretically from the mutual information perspective, as well as naturally incorporates the feature/label relevancy into consideration. Extensive experiments on synthetic and real-world datasets clearly demonstrate the superiorities of the proposed MILI-PML.
引用
收藏
页数:10
相关论文
共 24 条
  • [1] Learning multi-label scene classification
    Boutell, MR
    Luo, JB
    Shen, XP
    Brown, CM
    [J]. PATTERN RECOGNITION, 2004, 37 (09) : 1757 - 1771
  • [2] Fan RE, 2008, J MACH LEARN RES, V9, P1871
  • [3] Fang JP, 2019, AAAI CONF ARTIF INTE, P3518
  • [4] Multilabel classification via calibrated label ranking
    Fuernkranz, Johannes
    Huellermeier, Eyke
    Mencia, Eneldo Loza
    Brinker, Klaus
    [J]. MACHINE LEARNING, 2008, 73 (02) : 133 - 153
  • [5] Gong Xiuwen, 2021, IEEE T NEURAL NETWOR
  • [6] Huiskes MJ, 2008, P 1 ACM INT C MULT I, P39, DOI [10.1145/1460096.1460104, DOI 10.1145/1460096.1460104]
  • [7] Li ZW, 2020, PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P2612
  • [8] [刘威辰 Liu Weichen], 2017, [空军工程大学学报. 自然科学版, Journal of Air Force Engineering University. Natural Science Edition], V18, P1
  • [9] Metric Learning for Multi-Output Tasks
    Liu, Weiwei
    Xu, Donna
    Tsang, Ivor W.
    Zhang, Wenjie
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) : 408 - 422
  • [10] Liu WW, 2017, J MACH LEARN RES, V18