Collaborative Filtering Recommendation Model Based on User's Credibility Clustering

被引:0
|
作者
Zhao Xu [1 ]
Qiao Fuqiang [1 ]
机构
[1] Tianjin Sino German Vocat Tech Coll, Tianjin, Peoples R China
来源
PROCEEDINGS OF THIRTEENTH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING AND SCIENCE, (DCABES 2014) | 2014年
关键词
Collaborative Filtering; User's Credibility; Dynamic Clustering;
D O I
10.1109/DCABES.2014.51
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Aiming at the long response time, inaccurate recommendation and cold-start problems that faced by present recommendation algorithm, this paper, taking movie recommendation system as an example, proposes a collaborative filtering recommendation model based on user's credibility clustering. This model divides recommendation process into offline and online phases. Offline, it uses the result of user's credibility for clustering and then writes the clustered information into a table in database. Online, finds the cluster that target user belongs to and then gives recommendation. As a whole, the model reduces the response time, improves the accuracy of the recommendation rate, and solves the new user's cold-start problem.
引用
收藏
页码:234 / 238
页数:5
相关论文
共 50 条
  • [21] Clustering-Based Collaborative Filtering Using an Incentivized/Penalized User Model
    Tran, Cong
    Kim, Jang-Young
    Shin, Won-Yong
    Kim, Sang-Wook
    IEEE ACCESS, 2019, 7 : 62115 - 62125
  • [22] A User Trust-Based Collaborative Filtering Recommendation Algorithm
    Zhang, Fuzhi
    Bai, Long
    Gao, Feng
    INFORMATION AND COMMUNICATIONS SECURITY, PROCEEDINGS, 2009, 5927 : 411 - 424
  • [23] Improved Collaborative Filtering Recommendation Based on Classification and User Trust
    Xiao-Lin Xu
    Guang-Lin Xu
    Journal of Electronic Science and Technology, 2016, (01) : 25 - 31
  • [24] Hotel Recommendation System Based on User Profiles and Collaborative Filtering
    Turker, Bekir Berker
    Tugay, Resul
    Kizil, Ipek
    Oguducu, Sule
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 601 - 606
  • [25] Collaborative filtering recommendation algorithm based on user fuzzy similarity
    Wu, Yitao
    Zhang, Xingming
    Yu, Hong
    Wei, Shuai
    Guo, Wei
    INTELLIGENT DATA ANALYSIS, 2017, 21 (02) : 311 - 327
  • [26] The Research of Doctors Recommendation Algorithm based on Clustering and Collaborative Filtering
    Wang, Chen
    Xu, Man
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT 2016: THEORY AND APPLICATION OF INDUSTRIAL ENGINEERING, 2017, : 233 - 237
  • [27] Clustering Collaborative Filtering Recommendation System Based on SVD Algorithm
    Ba, Qilong
    Li, Xiaoyong
    Bai, Zhongying
    PROCEEDINGS OF 2013 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2012, : 963 - 967
  • [28] Collaborative Filtering Recommendation Based on Item Quality and User Ratings
    Jiao F.
    Li S.
    Data Analysis and Knowledge Discovery, 2019, 3 (08): : 62 - 67
  • [29] An improved clustering-based collaborative filtering recommendation algorithm
    Liu Xiaojun
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2017, 20 (02): : 1281 - 1288
  • [30] An improved clustering-based collaborative filtering recommendation algorithm
    Liu Xiaojun
    Cluster Computing, 2017, 20 : 1281 - 1288