Measurement and modeling of transcriptional noise in the cell cycle regulatory network

被引:16
作者
Ball, David A. [1 ]
Adames, Neil R. [1 ]
Reischmann, Nadine [1 ]
Barik, Debashis [2 ]
Franck, Christopher T. [1 ,3 ]
Tyson, John J. [1 ,2 ]
Peccoud, Jean [1 ,4 ]
机构
[1] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Biol Sci, Blacksburg, VA USA
[3] Virginia Tech, Dept Stat, Blacksburg, VA USA
[4] Virginia Tech, ICTAS Ctr Syst Biol Engn Tissues, Blacksburg, VA USA
基金
美国国家卫生研究院;
关键词
cell cycle; stochastic modeling; gene expression noise; Saccharomyces; cerevisiae; single mRNA FISH; MESSENGER-RNA STABILITY; MITOTIC-EXIT CONTROL; GENE-EXPRESSION; SACCHAROMYCES-CEREVISIAE; SIZE CONTROL; PROTEIN; DYNAMICS; STOCHASTICITY; LOCALIZATION; BISTABILITY;
D O I
10.4161/cc.26257
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Fifty years of genetic and molecular experiments have revealed a wealth of molecular interactions involved in the control of cell division. In light of the complexity of this control system, mathematical modeling has proved useful in analyzing biochemical hypotheses that can be tested experimentally. Stochastic modeling has been especially useful in understanding the intrinsic variability of cell cycle events, but stochastic modeling has been hampered by a lack of reliable data on the absolute numbers of mRNA molecules per cell for cell cycle control genes. To fill this void, we used fluorescence in situ hybridization (FISH) to collect single molecule mRNA data for 16 cell cycle regulators in budding yeast, Saccharomycescerevisiae. From statistical distributions of single-cell mRNA counts, we are able to extract the periodicity, timing, and magnitude of transcript abundance during the cell cycle. We used these parameters to improve a stochastic model of the cell cycle to better reflect the variability of molecular and phenotypic data on cell cycle progression in budding yeast.
引用
收藏
页码:3203 / 3218
页数:16
相关论文
共 64 条
[1]   Global signatures of protein and mRNA expression levels [J].
Abreu, Raquel de Sousa ;
Penalva, Luiz O. ;
Marcotte, Edward M. ;
Vogel, Christine .
MOLECULAR BIOSYSTEMS, 2009, 5 (12) :1512-1526
[2]  
Allan C, 2012, NAT METHODS, V9, P245, DOI [10.1038/NMETH.1896, 10.1038/nmeth.1896]
[3]   Oscillatory Dynamics of Cell Cycle Proteins in Single Yeast Cells Analyzed by Imaging Cytometry [J].
Ball, David A. ;
Marchand, Julie ;
Poulet, Magaly ;
Baumann, William T. ;
Chen, Katherine C. ;
Tyson, John J. ;
Peccoud, Jean .
PLOS ONE, 2011, 6 (10)
[4]   Stochastic exit from mitosis in budding yeast Model predictions and experimental observations [J].
Ball, David A. ;
Ahn, Tae-Hyuk ;
Wang, Pengyuan ;
Chen, Katherine C. ;
Cao, Yang ;
Tyson, John J. ;
Peccoud, Jean ;
Baumann, William T. .
CELL CYCLE, 2011, 10 (06) :999-1009
[6]   A model of yeast cell-cycle regulation based on multisite phosphorylation [J].
Barik, Debashis ;
Baumann, William T. ;
Paul, Mark R. ;
Novak, Bela ;
Tyson, John J. .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6
[7]   Coherence and timing of cell cycle start examined at single-cell resolution [J].
Bean, JM ;
Siggia, ED ;
Cross, FR .
MOLECULAR CELL, 2006, 21 (01) :3-14
[8]   Mitotic-exit control as an evolved complex system [J].
Bosl, WJ ;
Li, R .
CELL, 2005, 121 (03) :325-333
[9]   Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity [J].
Braunewell, Stefan ;
Bornholdt, Stefan .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 245 (04) :638-643
[10]   Forced periodic expression of G1 cyclins phase-locks the budding yeast cell cycle [J].
Charvin, G. ;
Cross, F. R. ;
Siggia, E. D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (16) :6632-6637