Nonexistence of positive supersolutions to some nonlinear elliptic problems

被引:19
作者
Alarcon, S. [1 ]
Garcia-Melian, J. [2 ,3 ]
Quaas, A. [1 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[2] Univ La Laguna, Dept Anal Matemat, San Cristobal la Laguna 38271, Spain
[3] Univ La Laguna, Fac Fis, Inst Univ Estudios Avanzados IUdEA Fis Atam Mol &, San Cristobal la Laguna 38203, Spain
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2013年 / 99卷 / 05期
关键词
Nonlinear elliptic problems; Liouville type theorems; Comparison principle; LIOUVILLE-TYPE THEOREMS; EQUATIONS; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.matpur.2012.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain Liouville type theorems for positive supersolutions of the elliptic problem -Delta u + vertical bar del u vertical bar(q) = lambda f(u) in exterior domains of R-N. Here q > 1 and the function f can be compared with a power p near zero or infinity. We show that positive supersolutions do not exist in some ranges of the parameters p and q which turn out to be optimal for the model case f(s) = s(p). The related problem -Delta u - vertical bar del u vertical bar(q) = f(u) is also analyzed. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:618 / 634
页数:17
相关论文
共 33 条
[1]   SOME EXISTENCE THEOREMS FOR SEMI-LINEAR ELLIPTIC EQUATIONS [J].
AMANN, H ;
CRANDALL, MG .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1978, 27 (05) :779-790
[2]  
[Anonymous], 1994, Topol. Methods Nonlinear Anal.
[3]   Nonexistence of Positive Supersolutions of Elliptic Equations via the Maximum Principle [J].
Armstrong, Scott N. ;
Sirakov, Boyan .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (11) :2011-2047
[4]  
Armstrong SN, 2011, ANN SCUOLA NORM-SCI, V10, P711
[5]   ON POSITIVE SOLUTIONS OF EMDEN EQUATIONS IN CONE-LIKE DOMAINS [J].
BANDLE, C ;
ESSEN, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (04) :319-338
[6]   ON THE EXISTENCE AND NONEXISTENCE OF GLOBAL-SOLUTIONS OF REACTION-DIFFUSION EQUATIONS IN SECTORIAL DOMAINS [J].
BANDLE, C ;
LEVINE, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 316 (02) :595-622
[7]   Nonexistence results and estimates for some nonlinear elliptic problems [J].
Bidaut-Véron, MF ;
Pohozaev, S .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1) :1-49
[9]   SOME BLOWUP RESULTS FOR A NONLINEAR PARABOLIC EQUATION WITH A GRADIENT TERM [J].
CHIPOT, M ;
WEISSLER, FB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (04) :886-907
[10]   On the Liouville property for fully nonlinear equations [J].
Cutrì, A ;
Leoni, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (02) :219-245