Polyamide membranes with nanoscale Turing structures for water purification

被引:1331
作者
Tan, Zhe [1 ]
Chen, Shengfu [1 ]
Peng, Xinsheng [2 ]
Zhang, Lin [1 ]
Gao, Congjie [1 ,3 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, Key Lab Biomass Chem Engn, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Natl Engn Res Ctr Liquid Separat Membrane, Hangzhou 310012, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
INTERFACIAL POLYCONDENSATION; REVERSE-OSMOSIS; DIFFUSION; RO; MECHANISM; PATTERNS;
D O I
10.1126/science.aar6308
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The emergence of Turing structures is of fundamental importance, and designing these structures and developing their applications have practical effects in chemistry and biology. We use a facile route based on interfacial polymerization to generate Turing-type polyamide membranes for water purification. Manipulation of shapes by control of reaction conditions enabled the creation of membranes with bubble or tube structures. These membranes exhibit excellent water-salt separation performance that surpasses the upper-bound line of traditional desalination membranes. Furthermore, we show the existence of high water permeability sites in the Turing structures, where water transport through the membranes is enhanced.
引用
收藏
页码:518 / +
页数:4
相关论文
共 29 条
[1]  
[Anonymous], 1982, Models of biological pattern formation
[2]   Tomography of Reaction-Diffusion Microemulsions Reveals Three-Dimensional Turing Patterns [J].
Bansagi, Tamas, Jr. ;
Vanag, Vladimir K. ;
Epstein, Irving R. .
SCIENCE, 2011, 331 (6022) :1309-1312
[3]   INTERFACIAL SYNTHESIS IN THE PREPARATION OF REVERSE-OSMOSIS MEMBRANES [J].
CADOTTE, JE ;
KING, RS ;
MAJERLE, RJ ;
PETERSEN, RJ .
JOURNAL OF MACROMOLECULAR SCIENCE-CHEMISTRY, 1981, A15 (05) :727-755
[4]   EXPERIMENTAL-EVIDENCE OF A SUSTAINED STANDING TURING-TYPE NONEQUILIBRIUM CHEMICAL-PATTERN [J].
CASTETS, V ;
DULOS, E ;
BOISSONADE, J ;
DEKEPPER, P .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2953-2956
[5]  
Epstein IR, 2016, NAT NANOTECHNOL, V11, P312, DOI [10.1038/nnano.2016.41, 10.1038/NNANO.2016.41]
[6]   Water permeability and water/salt selectivity tradeoff in polymers for desalination [J].
Geise, Geoffrey M. ;
Park, Ho Bum ;
Sagle, Alyson C. ;
Freeman, Benny D. ;
McGrath, James E. .
JOURNAL OF MEMBRANE SCIENCE, 2011, 369 (1-2) :130-138
[7]   THEORY OF BIOLOGICAL PATTERN FORMATION [J].
GIERER, A ;
MEINHARDT, H .
KYBERNETIK, 1972, 12 (01) :30-39
[8]   An Experimental Design Method Leading to Chemical Turing Patterns [J].
Horvath, Judit ;
Szalai, Istvan ;
De Kepper, Patrick .
SCIENCE, 2009, 324 (5928) :772-775
[9]   Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation [J].
Kondo, Shigeru ;
Miura, Takashi .
SCIENCE, 2010, 329 (5999) :1616-1620
[10]  
Morgan P.W., 1965, CONDENSATION POLYM I