Asymptotic behaviour of optimal spectral planar domains with fixed perimeter

被引:21
作者
Bucur, Dorin [1 ]
Freitas, Pedro [2 ,3 ]
机构
[1] Univ Savoie, Lab Math LAMA, Campus Sci, F-73376 Le Bourget Du Lac, France
[2] Univ Lisbon, Dept Math, Fac Motricidade Humana TU Lisbon, P-1649003 Lisbon, Portugal
[3] Univ Lisbon, Grp Math Phys, P-1649003 Lisbon, Portugal
关键词
MINIMIZATION; EIGENVALUES; DIRICHLET;
D O I
10.1063/1.4803140
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the problem of minimizing the kth Dirichlet eigenvalue of planar domains with fixed perimeter and show that, as k goes to infinity, the optimal domain converges to the ball with the same perimeter. We also consider this problem within restricted classes of domains such as n-polygons and tiling domains, for which we show that the optimal asymptotic domain is that which maximises the area for fixed perimeter within the given family, i.e., the regular n-polygon and the regular hexagon, respectively. Physically, the above problems correspond to the determination of the shapes within a given class which will support the largest number of modes below a given frequency. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 21 条
[1]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[2]  
[Anonymous], 1923, Bayer. Akad. Wiss. Munchen, Math.-Phys. Kl.
[3]   Optimal spectral rectangles and lattice ellipses [J].
Antunes, Pedro R. S. ;
Freitas, Pedro .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2150)
[4]   Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians [J].
Antunes, Pedro R. S. ;
Freitas, Pedro .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) :235-257
[5]  
Berezin FA., 1972, MATH USSR IZV, V6, P1117, DOI 10.1070/IM1972v006n05ABEH001913
[6]   Minimization of the k-th eigenvalue of the Dirichlet Laplacian [J].
Bucur, Dorin .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (03) :1073-1083
[7]   Minimization of λ2(Ω) with a Perimeter Constraint [J].
Bucur, Dorin ;
Buttazzo, Giuseppe ;
Henrot, Antoine .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (06) :2709-2728
[8]  
De Philippis G., 2013, ARXIV13030968V1
[9]   The honeycomb conjecture [J].
Hales, TC .
DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 25 (01) :1-22
[10]  
Henrot A, 2005, MATH APPL-BERLIN, V48, P1