Unsteady micropolar fluid flow in a thin domain with Tresca fluid-solid interface law

被引:6
作者
Boukrouche, M. [1 ]
Paoli, L. [1 ]
Ziane, F. [2 ]
机构
[1] Univ Lyon, Univ Jean Monnet St Etienne, CNRS, UMR 5208,Inst Camille Jordan, F-42023 St Etienne, France
[2] USTHB, Bab Ezzouar, Algeria
关键词
Micropolar fluid; Tresca friction law; Asymptotic analysis; Two-scale convergence; BOUNDARY;
D O I
10.1016/j.camwa.2018.08.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a micropolar fluid flow in a two-dimensional domain. We assume that the velocity field satisfies a non-linear slip boundary condition of friction type on a part of the boundary while the micro-rotation field satisfies non-homogeneous Dirichlet boundary conditions. We prove the existence and uniqueness of a solution. Then motivated by lubrication problems we assume that the thickness and the roughness of the domain are of order 0 < epsilon << 1 and we study the asymptotic behaviour of the flow as e tends to zero. By using the two-scale convergence technique we derive the limit problem which is totally decoupled for the limit velocity and pressure (upsilon(0), p(0)) on one hand and the limit micro-rotation Z(0) on the other hand. Moreover we prove that upsilon(0), p(0) and Z(0) are uniquely determined via auxiliary well-posed problems. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2917 / 2932
页数:16
相关论文
共 19 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]   MICROCONTINUUM FLUID MECHANICS - REVIEW [J].
ARIMAN, T ;
TURK, MA ;
SYLVESTER, ND .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1973, 11 (08) :905-930
[3]   APPLICATIONS OF MICROCONTINUUM FLUID MECHANICS [J].
ARIMAN, T ;
TURK, MA ;
SYLVESTER, ND .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1974, 12 (04) :273-293
[4]  
Boukrouche M., 2015, ARXIV151206607MATHAP
[5]   Asymptotic behaviour of solutions of lubrication problem in a thin domain with a rough boundary and Tresca fluid-solid interface law [J].
Boukrouche, Mahdi ;
Ciuperca, Ionel .
QUARTERLY OF APPLIED MATHEMATICS, 2006, 64 (03) :561-591
[6]   Non-isothermal Navier-Stokes system with mixed boundary conditions and friction law: Uniqueness and regularity properties [J].
Boukrouche, Mahdi ;
Boussetouan, Imane ;
Paoli, Laetitia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 102 :168-185
[7]   ASYMPTOTIC ANALYSIS OF A MICROPOLAR FLUID FLOW IN A THIN DOMAIN WITH A FREE AND ROUGH BOUNDARY [J].
Boukrouche, Mahdi ;
Paoli, Laetitia .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) :1211-1256
[8]  
Brezis H., 1973, OPERATEURS MAXIMAUX, V5
[9]  
Duvaut G., 1972, INEQUATIONS MECANIQU, P387
[10]  
Eringen A.C., 2012, Microcontinuum Field Theories: I. Foundations and Solids