Unsteady micropolar fluid flow in a thin domain with Tresca fluid-solid interface law
被引:5
|
作者:
Boukrouche, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lyon, Univ Jean Monnet St Etienne, CNRS, UMR 5208,Inst Camille Jordan, F-42023 St Etienne, FranceUniv Lyon, Univ Jean Monnet St Etienne, CNRS, UMR 5208,Inst Camille Jordan, F-42023 St Etienne, France
Boukrouche, M.
[1
]
Paoli, L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lyon, Univ Jean Monnet St Etienne, CNRS, UMR 5208,Inst Camille Jordan, F-42023 St Etienne, FranceUniv Lyon, Univ Jean Monnet St Etienne, CNRS, UMR 5208,Inst Camille Jordan, F-42023 St Etienne, France
Paoli, L.
[1
]
Ziane, F.
论文数: 0引用数: 0
h-index: 0
机构:
USTHB, Bab Ezzouar, AlgeriaUniv Lyon, Univ Jean Monnet St Etienne, CNRS, UMR 5208,Inst Camille Jordan, F-42023 St Etienne, France
Ziane, F.
[2
]
机构:
[1] Univ Lyon, Univ Jean Monnet St Etienne, CNRS, UMR 5208,Inst Camille Jordan, F-42023 St Etienne, France
We consider a micropolar fluid flow in a two-dimensional domain. We assume that the velocity field satisfies a non-linear slip boundary condition of friction type on a part of the boundary while the micro-rotation field satisfies non-homogeneous Dirichlet boundary conditions. We prove the existence and uniqueness of a solution. Then motivated by lubrication problems we assume that the thickness and the roughness of the domain are of order 0 < epsilon << 1 and we study the asymptotic behaviour of the flow as e tends to zero. By using the two-scale convergence technique we derive the limit problem which is totally decoupled for the limit velocity and pressure (upsilon(0), p(0)) on one hand and the limit micro-rotation Z(0) on the other hand. Moreover we prove that upsilon(0), p(0) and Z(0) are uniquely determined via auxiliary well-posed problems. (C) 2018 Elsevier Ltd. All rights reserved.
机构:
UNIV NEW S WALES,ROYAL MIL COLL,FAC MIL STUDIES,DEPT CHEM,DUNTROON 2600,ACT,AUSTRALIAUNIV NEW S WALES,ROYAL MIL COLL,FAC MIL STUDIES,DEPT CHEM,DUNTROON 2600,ACT,AUSTRALIA
THOMPSON, NE
ISBISTER, DJ
论文数: 0引用数: 0
h-index: 0
机构:
UNIV NEW S WALES,ROYAL MIL COLL,FAC MIL STUDIES,DEPT CHEM,DUNTROON 2600,ACT,AUSTRALIAUNIV NEW S WALES,ROYAL MIL COLL,FAC MIL STUDIES,DEPT CHEM,DUNTROON 2600,ACT,AUSTRALIA
ISBISTER, DJ
BEARMAN, RJ
论文数: 0引用数: 0
h-index: 0
机构:
UNIV NEW S WALES,ROYAL MIL COLL,FAC MIL STUDIES,DEPT CHEM,DUNTROON 2600,ACT,AUSTRALIAUNIV NEW S WALES,ROYAL MIL COLL,FAC MIL STUDIES,DEPT CHEM,DUNTROON 2600,ACT,AUSTRALIA
BEARMAN, RJ
FREASIER, BC
论文数: 0引用数: 0
h-index: 0
机构:
UNIV NEW S WALES,ROYAL MIL COLL,FAC MIL STUDIES,DEPT CHEM,DUNTROON 2600,ACT,AUSTRALIAUNIV NEW S WALES,ROYAL MIL COLL,FAC MIL STUDIES,DEPT CHEM,DUNTROON 2600,ACT,AUSTRALIA
机构:
Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, EgyptDepartment of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt
M. S. Faltas
H. H. Sherief
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, EgyptDepartment of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt
H. H. Sherief
E. A. Ashmawy
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, EgyptDepartment of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt
E. A. Ashmawy
M. G. Nashwan
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, EgyptDepartment of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt