A Systematic Review on Hidden Markov Models for Sentiment Analysis

被引:1
作者
Odumuyiwa, Victor [1 ]
Osisiogu, Ukachi [2 ]
机构
[1] Univ Lagos, Dept Comp Sci, Lagos, Nigeria
[2] African Univ Sci & Technol, Dept Comp Sci, Abuja, Nigeria
来源
2019 15TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTER AND COMPUTATION (ICECCO) | 2019年
关键词
Hidden Markov Models; Markov Chain; Sentiment Analysis; Probabilistic Graphical Models; Review;
D O I
10.1109/icecco48375.2019.9043297
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper gives a review of the literature on the application of Hidden Markov Models in the field of sentiment analysis. This is done in relation to a research project on semantic representation and the use of probabilistic graphical models for the determination of sentiment in textual data. Relevant articles have been analyzed that correspond mainly to the certain variations of the implementation of HMM and a variety of use cases for the purpose of sentiment classification. Finally, this review presents the grounds for future works that seek to develop techniques for semantic text representations implemented with probabilistic graphical models (Hidden Markov Models) or that through a combination scheme allow for superior classification performance.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Big data analytics in E-commerce: a systematic review and agenda for future research [J].
Akter, Shahriar ;
Wamba, Samuel Fosso .
ELECTRONIC MARKETS, 2016, 26 (02) :173-194
[2]   Sentiment Analysis in Tourism: Capitalizing on Big Data [J].
Alaei, Ali Reza ;
Becken, Susanne ;
Stantic, Bela .
JOURNAL OF TRAVEL RESEARCH, 2019, 58 (02) :175-191
[3]   Writing a review paper [J].
Allwood, Julian M. ;
Tekkaya, A. Erman .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2012, 212 (01) :1-2
[4]   Tweet sentiment analysis with classifier ensembles [J].
da Silva, Nadia F. F. ;
Hruschka, Eduardo R. ;
Hruschka, Estevam R., Jr. .
DECISION SUPPORT SYSTEMS, 2014, 66 :170-179
[5]  
Demers E., 2008, INSEAD Working Papers Collection, V44, P1
[6]   Markov models - hidden Markov models [J].
Grewal, Jasleen K. ;
Krzywinski, Martin ;
Altman, Naomi .
NATURE METHODS, 2019, 16 (09) :795-796
[7]  
Gruber A., 2007, AISTATS, P163
[8]  
Henry E., 2008, J BUS COMMUN, V45, P363
[9]   Opinion mining using ensemble text hidden Markov models for text classification [J].
Kang, Mangi ;
Ahn, Jaelim ;
Lee, Kichun .
EXPERT SYSTEMS WITH APPLICATIONS, 2018, 94 :218-227
[10]  
Kim NR, 2017, INT J FUZZY LOG INTE, V17, P329, DOI 10.5391/IJFIS.2017.17.4.329