On the measurability of functions with quasi-continuous and upper semi-continuous vertical sections

被引:1
作者
Grande, Zbigniew [1 ]
机构
[1] Kazimierz Wielki Univ, Inst Math, PL-85072 Bydgoszcz, Poland
关键词
Lebesgue measurability; Baire property; Baire classes; upper semi-continuity; quasi-continuity; sup-measurability;
D O I
10.2478/s12175-013-0135-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f: a"e(2) -> a"e be a function with upper semicontinuous and quasi-continuous vertical sections f (x) (t) = f(x, t), t, x a a"e. It is proved that if the horizontal sections f (y) (t) = f(t, y), y, t a a"e, are of Baire class alpha (resp. Lebesgue measurable) [resp. with the Baire property] then f is of Baire class alpha + 2 (resp. Lebesgue measurable and sup-measurable) [resp. has Baire property].
引用
收藏
页码:793 / 798
页数:6
相关论文
共 10 条
  • [1] Bruckner A. M., 1978, LECT NOTES MATH, V659
  • [2] DAVIES RO, 1973, P CAMB PHILOS SOC, V73, P461
  • [3] GRANDE Z, 1985, FUND MATH, V126, P1
  • [4] Kempisty S., 1932, Fund. Math, V19, P184, DOI DOI 10.4064/FM-19-1-184-197
  • [5] Laczkovich M., 1995, C MATH, V69, P299
  • [6] Neubrunn T., 1988, Real Anal. Exch., V14, P259, DOI DOI 10.2307/44151947
  • [7] Sierpinski W., 1920, Fund. Math., V1, P112
  • [8] Sikorski R., 1957, REAL FUNCTIONS
  • [9] SZRAGIN W., 1971, DOKL AKAD NAUK SSSR, V197, P295
  • [10] [No title captured]