Almost invariant elliptic manifold in a singularly perturbed Hamiltonian system

被引:39
作者
Gelfreich, V
Lerman, L
机构
[1] Free Univ Berlin, Inst Math 1, D-14195 Berlin, Germany
[2] Nizhny Novgorod State Univ, Dept Math, Nizhnii Novgorod 603005, Russia
[3] Inst Appl Math & Cybernet, Nizhnii Novgorod 603005, Russia
关键词
D O I
10.1088/0951-7715/15/2/312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singularly perturbed Hamiltonian system, which loses one degree of freedom at epsilon = 0. Assume the slow manifold to be normally elliptic. In the case of an analytic Hamilton function, it is shown that the slow manifold persists up to an exponentially small error term.
引用
收藏
页码:447 / 457
页数:11
相关论文
共 12 条
[1]   Solitary wave solutions of nonlocal sine-Gordon equations [J].
Alfimov, GL ;
Eleonsky, VM ;
Lerman, LM .
CHAOS, 1998, 8 (01) :257-271
[2]  
AMICK CJ, 1989, ARCH RATION MECH AN, V105, P1
[3]  
[Anonymous], ANAL FUNCTIONS SEVER
[4]  
Bogolyubov N., 1961, ASYMPTOTIC METHODS T
[5]   A NORMALLY ELLIPTIC HAMILTONIAN BIFURCATION [J].
BROER, HW ;
CHOW, SN ;
KIM, Y ;
VEGTER, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1993, 44 (03) :389-432
[7]  
Hirsh M., 1977, LECT NOTES MATH, V583
[9]  
Neishtadt AI, 1981, PRIKL MAT MEKH, V45, P1016
[10]  
NEISHTADT AI, 1984, PRIKL MAT MEKH, V48, P197