Nonparametric estimation for some nonlinear models

被引:9
作者
Thavaneswaran, A
Peiris, S
机构
[1] UNIV MANITOBA,WINNIPEG,MB R3T 2N2,CANADA
[2] UNIV SYDNEY,SCH MATH & STAT,SYDNEY,NSW 2006,AUSTRALIA
关键词
nonlinear; nonparametric; estimation; estimating function; autoregressive; random coefficient; kernel;
D O I
10.1016/0167-7152(95)00128-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Godambe's (1985) theorem on optimal estimating equations for stochastic processes is applied to nonparametric estimation problems for nonlinear time-series models with time-varying parameter alpha(t). Examples are considered from the usual classes of nonlinear time-series models. The goal of this paper is to arrive at a nonparametric estimate <(theta)over cap>(0) of theta(0) = alpha(t(0)) for a fixed point t(0) is an element of [0, 1].
引用
收藏
页码:227 / 233
页数:7
相关论文
共 9 条
[1]  
GODAMBE VP, 1985, BIOMETRIKA, V72, P419
[2]   AN OPTIMUM PROPERTY OF REGULAR MAXIMUM-LIKELIHOOD ESTIMATION [J].
GODAMBE, VP .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (04) :1208-1211
[3]   USING EMPIRICAL PARTIALLY BAYES INFERENCE FOR INCREASED EFFICIENCY [J].
LINDSAY, BG .
ANNALS OF STATISTICS, 1985, 13 (03) :914-931
[4]  
Nicholls D. F., 1980, Journal of Time Series Analysis, V1, P37, DOI 10.1111/j.1467-9892.1980.tb00299.x
[5]  
Shiryaev A. N., 1984, Probability
[7]   A NOTE ON SMOOTHED ESTIMATING FUNCTIONS [J].
THAVANESWARAN, A ;
SINGH, J .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1993, 45 (04) :721-729
[8]  
Thavaneswaran A., 1988, J TIME SER ANAL, V9, P99
[9]   ESTIMATION IN NONLINEAR TIME-SERIES MODELS [J].
TJOSTHEIM, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1986, 21 (02) :251-273