机构:
Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USAAuburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
Albrecht, Ulrich
[1
]
McQuaig, Bradley
论文数: 0引用数: 0
h-index: 0
机构:
Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USAAuburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
McQuaig, Bradley
[1
]
机构:
[1] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
来源:
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA
|
2020年
/
143卷
关键词:
Divisible;
duo-rings;
pre-Matlis;
MODULES;
D O I:
10.4171/RSMUP/40
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper investigates the projective dimension of the maximal right ring of quotients Q(r)(R) of a right non-singular ring R. Our discussion addresses the question under which conditions pd(Q) <= 1 guarantees that the module Q/R is a direct sum of countably generated modules extending Matlis' Theorem for integral domains to a non-commutative setting.