On dynamics and bifurcations of area-preserving maps with homoclinic tangencies

被引:10
|
作者
Delshams, Amadeu [1 ]
Gonchenko, Marina [2 ]
Gonchenko, Sergey [3 ]
机构
[1] Univ Politecn Cataluna, Dept Matemat Aplicada 1, E-08028 Barcelona, Spain
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[3] Nizhnii Novgorod State Univ, Inst Appl Math & Cybernet, Nizhnii Novgorod 603005, Russia
基金
俄罗斯科学基金会;
关键词
homoclinic tangency; area preserving mapping; bifurcation; ELLIPTIC ISLANDS; 2-DIMENSIONAL DIFFEOMORPHISMS; SYSTEMS; ISLES;
D O I
10.1088/0951-7715/28/9/3027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study bifurcations of area-preserving maps, both orientable (symplectic) and non-orientable, with quadratic homoclinic tangencies. We consider one and two parameter general unfoldings and establish results related to the appearance of elliptic periodic orbits. In particular, we find conditions for such maps to have infinitely many generic (KAM-stable) elliptic periodic orbits of all successive periods starting at some number.
引用
收藏
页码:3027 / 3071
页数:45
相关论文
共 35 条
  • [1] On bifurcations of area-preserving and nonorientable maps with quadratic homoclinic tangencies
    Delshams, Amadeu
    Gonchenko, Marina
    Gonchenko, Sergey V.
    REGULAR & CHAOTIC DYNAMICS, 2014, 19 (06) : 702 - 717
  • [2] On bifurcations of area-preserving and nonorientable maps with quadratic homoclinic tangencies
    Amadeu Delshams
    Marina Gonchenko
    Sergey V. Gonchenko
    Regular and Chaotic Dynamics, 2014, 19 : 702 - 717
  • [3] Bifurcations of Cubic Homoclinic Tangencies in Two-dimensional Symplectic Maps
    Gonchenko, M.
    Gonchenko, S.
    Ovsyannikov, I.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (01) : 41 - 61
  • [4] On Two-Dimensional Area-Preserving Maps with Homoclinic Tangencies that Have Infinitely Many Generic Elliptic Periodic Points
    S. V. Gonchenko
    L. P. Shilnikov
    Journal of Mathematical Sciences, 2005, 128 (2) : 2767 - 2773
  • [5] Birth of discrete Lorenz attractors at the bifurcations of 3D maps with homoclinic tangencies to saddle points
    Gonchenko, Sergey V.
    Ovsyannikov, Ivan I.
    Tatjer, Joan C.
    REGULAR & CHAOTIC DYNAMICS, 2014, 19 (04) : 495 - 505
  • [6] Birth of discrete Lorenz attractors at the bifurcations of 3D maps with homoclinic tangencies to saddle points
    Sergey V. Gonchenko
    Ivan I. Ovsyannikov
    Joan C. Tatjer
    Regular and Chaotic Dynamics, 2014, 19 : 495 - 505
  • [7] Secondary nontwist phenomena in area-preserving maps
    Vieira Abud, C.
    Caldas, I. L.
    CHAOS, 2012, 22 (03)
  • [8] Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized henon maps
    Gonchenko, S. V.
    Gonchenko, V. S.
    Tatjer, J. C.
    REGULAR & CHAOTIC DYNAMICS, 2007, 12 (03) : 233 - 266
  • [9] Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized Hénon maps
    S. V. Gonchenko
    V. S. Gonchenko
    J. C. Tatjer
    Regular and Chaotic Dynamics, 2007, 12 : 233 - 266
  • [10] A numerical study of infinitely renormalizable area-preserving maps
    Gaidashev, Denis
    Johnson, Tomas
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2012, 27 (03): : 283 - 301