Robust Kernel-Based Machine Learning Localization Using NLOS TOAs or TDOAs

被引:0
作者
Li, Jun [1 ]
Lu, I-Tai [1 ]
Lu, Jonathan S. [2 ]
Zhang, Lingwen [3 ]
机构
[1] NYU, Dept Elect & Comp Engn, Tandon Sch Engn, New York, NY 10003 USA
[2] Polaris Wireless, Mountain View, CA USA
[3] Beijing Jiao Tong Univ, Inst Broadband Wireless Commun, Beijing, Peoples R China
来源
2017 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE (LISAT) | 2017年
关键词
Localization; TOA; TDOA; NLOS; Kernel-based Machine Learning; fingerprinting; SENSOR NETWORK LOCALIZATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A robust kernel-based machine learning localization scheme using time of arrival (TOA) or time difference of arrival (TDOA) in none-line-of-sight (NLOS) environments is proposed. The scheme can provide accurate position estimation while the reference nodes are coarsely and randomly distributed in the area of interests. Moreover, the scheme is insensitive with respect to random TOA synchronization and measurement errors.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A Portfolio of Machine Learning-based GNSS LOS/NLOS Classification in Urban Environments
    Zhu, Ni
    Belemoualem, Chaimae
    Renaudin, Valerie
    2023 IEEE SENSORS, 2023,
  • [32] Under-Sampled UWB NLOS/LOS Channel Classification using Machine Learning
    Muqaibel, Ali H.
    Alawsh, Saleh A.
    Binmakhashen, Galal M.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, : 6095 - 6108
  • [33] Event Detection and Localization Using Machine Learning on a Staircase
    Feichtl, Blake
    Thompson, Caleb
    Liboro, Tyler
    Siddiqui, Saad
    Malladi, V. V. N. Sriram
    Devine, Tim
    Tarazaga, Pablo A.
    DYNAMICS OF CIVIL STRUCTURES, VOL 2, IMAC 2019, 2020, : 219 - 223
  • [34] Modified MM Algorithm and Bayesian Expectation Maximization-Based Robust Localization Under NLOS Contaminated Environments
    Park, Chee-Hyun
    Chang, Joon-Hyuk
    IEEE ACCESS, 2021, 9 : 4059 - 4071
  • [35] A Grid-based Sensor Floor Platform for Robot Localization using Machine Learning
    Gouda, Anas
    Heinrich, Danny
    Huennefeld, Mirco
    Priyanta, Irfan Fachrudin
    Reining, Christopher
    Roidl, Moritz
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [36] CellinDeep: Robust and Accurate Cellular-Based Indoor Localization via Deep Learning
    Rizk, Hamada
    Torki, Marwan
    Youssef, Moustafa
    IEEE SENSORS JOURNAL, 2019, 19 (06) : 2305 - 2312
  • [37] Localization in Urban Canyon: Machine Learning based Localization Using LTE or LoRa Signal for 'GNSS-denied' Areas
    Yu, Boseon
    Lee, Taikjin
    Shin, Beomju
    Lee, Jungho
    Lee, Seoho
    PROCEEDINGS OF THE 30TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2017), 2017, : 456 - 462
  • [38] Using a machine learning proxy for localization in ensemble data assimilation
    Lacerda, Johann M.
    Emerick, Alexandre A.
    Pires, Adolfo P.
    COMPUTATIONAL GEOSCIENCES, 2021, 25 (03) : 931 - 944
  • [39] Construction Resource Localization Based on UAV-RFID Platform Using Machine Learning Algorithm
    Won, D.
    Park, M. -W.
    Chi, S.
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2018, : 1086 - 1090
  • [40] Using a machine learning proxy for localization in ensemble data assimilation
    Johann M. Lacerda
    Alexandre A. Emerick
    Adolfo P. Pires
    Computational Geosciences, 2021, 25 : 931 - 944