Robust Kernel-Based Machine Learning Localization Using NLOS TOAs or TDOAs

被引:0
作者
Li, Jun [1 ]
Lu, I-Tai [1 ]
Lu, Jonathan S. [2 ]
Zhang, Lingwen [3 ]
机构
[1] NYU, Dept Elect & Comp Engn, Tandon Sch Engn, New York, NY 10003 USA
[2] Polaris Wireless, Mountain View, CA USA
[3] Beijing Jiao Tong Univ, Inst Broadband Wireless Commun, Beijing, Peoples R China
来源
2017 IEEE LONG ISLAND SYSTEMS, APPLICATIONS AND TECHNOLOGY CONFERENCE (LISAT) | 2017年
关键词
Localization; TOA; TDOA; NLOS; Kernel-based Machine Learning; fingerprinting; SENSOR NETWORK LOCALIZATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A robust kernel-based machine learning localization scheme using time of arrival (TOA) or time difference of arrival (TDOA) in none-line-of-sight (NLOS) environments is proposed. The scheme can provide accurate position estimation while the reference nodes are coarsely and randomly distributed in the area of interests. Moreover, the scheme is insensitive with respect to random TOA synchronization and measurement errors.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Preimage Problem in Kernel-Based Machine Learning
    Honeine, Paul
    Richard, Cedric
    IEEE SIGNAL PROCESSING MAGAZINE, 2011, 28 (02) : 77 - 88
  • [2] Kernel-based localization using fingerprinting in wireless sensor networks
    Mahfouz, Sandy
    Mourad-Chehade, Farah
    Honeine, Paul
    Snoussi, Hichem
    Farah, Joumana
    2013 IEEE 14TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2013, : 744 - 748
  • [3] A Kernel-Based Learning Approach to Ad Hoc Sensor Network Localization
    Nguyen, Xuanlong
    Jordan, Michael I.
    Sinopoli, Bruno
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2005, 1 (01)
  • [4] Detection System of Salmon Freshness Based on SVM Kernel-based Machine Learning
    Li X.
    Dong B.
    Yang M.
    Zhang G.
    Zhang X.
    Cheng J.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (05): : 376 - 384
  • [5] Decentralized Kernel-Based Localization in Wireless Sensor Networks Using Belief Functions
    Alshamaa, Daniel
    Mourad-Chehade, Farah
    Honeine, Paul
    IEEE SENSORS JOURNAL, 2019, 19 (11) : 4149 - 4159
  • [6] Robust ToA-Based Localization in a Mixed LOS/NLOS Environment Using Hybrid Mapping Technique
    Al-Samahi, Sanaa S. A.
    Ho, K. C.
    Islam, N. E.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [7] TDOA Based Indoor Positioning with NLOS Identification by Machine Learning
    Wu, Chi
    Hou, Hongwei
    Wang, Wenjin
    Huang, Qing
    Gao, Xiqi
    2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,
  • [8] Hybrid Kernel Based Machine Learning Using Received Signal Strength Measurements for Indoor Localization
    Yan, Jun
    Zhao, Lin
    Tang, Jian
    Chen, Yuwei
    Chen, Ruizhi
    Chen, Liang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (03) : 2824 - 2829
  • [9] Identification of NLOS and Multi-Path Conditions in UWB Localization Using Machine Learning Methods
    Sang, Cung Lian
    Steinhagen, Bastian
    Homburg, Jonas Dominik
    Adams, Michael
    Hesse, Marc
    Rueckert, Ulrich
    APPLIED SCIENCES-BASEL, 2020, 10 (11):
  • [10] NLOS identification for UWB localization based on import vector machine
    Yang, Xiaofeng
    Zhao, Feng
    Chen, Tiejun
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 87 : 128 - 133