Role of unfolded state heterogeneity and en-route ruggedness in protein folding kinetics

被引:26
作者
Ellison, PA [1 ]
Cavagnero, S [1 ]
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53705 USA
关键词
protein folding; single-exponential; stretched-exponential; landscapes; pathways; kinetics;
D O I
10.1110/ps.051758206
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In order to improve our understanding of the physical bases of protein folding, there is a compelling need for better connections between experimental and computational approaches. This work addresses the role of unfolded state conformational heterogeneity and en-route intermediates, as an aid for planning and interpreting protein folding experiments. The expected kinetics were modeled for different types of energy landscapes, including multiple parallel folding routes, preferential paths dominated by one primary folding route, and distributed paths with a wide spectrum of microscopic folding rate constants. In the presence of one or more preferential routes, conformational exchange among unfolded state populations slows down the observed rates for native protein formation. We find this to be a general phenomenon, taking place even when unfolded conformations interconvert much faster than the "escape" rate constants to folding. Dramatic kinetic deceleration is expected in the presence of an increasing number of folding-incompetent unfolded conformations. This argues for the existence of parallel folding paths involving several folding-competent unfolded conformations, during the early stages of protein folding. Deviations from single-exponential behavior are observed for unfolded conformations exchanging at comparable rates or more slowly than folding events. Analysis of the effect of en-route (on-path) intermediate formation and landscape ruggedness on folding kinetics leads to the following unexpected conclusions: (1) intermediates, which often retard native state formation, may in some cases accelerate folding, and (2) rugged landscapes, usually associated with stretched exponentials, display single-exponential behavior in the presence of late high-friction paths.
引用
收藏
页码:564 / 582
页数:19
相关论文
共 57 条
[1]   THE ROLE OF SOLVENT VISCOSITY IN THE DYNAMICS OF PROTEIN CONFORMATIONAL-CHANGES [J].
ANSARI, A ;
JONES, CM ;
HENRY, ER ;
HOFRICHTER, J ;
EATON, WA .
SCIENCE, 1992, 256 (5065) :1796-1798
[2]  
BALDWIN RL, 1995, J BIOMOL NMR, V5, P103
[3]   Protein and peptide folding explored with molecular simulations [J].
Brooks, CL .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (06) :447-454
[4]   Chemical physics of protein folding [J].
Brooks, CL ;
Gruebele, M ;
Onuchic, JN ;
Wolynes, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (19) :11037-11038
[5]   FUNNELS, PATHWAYS, AND THE ENERGY LANDSCAPE OF PROTEIN-FOLDING - A SYNTHESIS [J].
BRYNGELSON, JD ;
ONUCHIC, JN ;
SOCCI, ND ;
WOLYNES, PG .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1995, 21 (03) :167-195
[6]   The Greek key protein apo-pseudoazurin folds through an obligate on-pathway intermediate [J].
Capaldi, AP ;
Ferguson, SJ ;
Radford, SE .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 286 (05) :1621-1632
[7]  
Capaldi AP, 2001, NAT STRUCT BIOL, V8, P68
[8]   The kinetics of conformational fluctuations in an unfolded protein measured by fluorescence methods [J].
Chattopadhyay, K ;
Elson, EL ;
Frieden, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (07) :2385-2389
[9]   Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins [J].
Clementi, C ;
Nymeyer, H ;
Onuchic, JN .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (05) :937-953