Target State Estimation for Vision-Based Landing on a Moving Ground Target

被引:0
作者
Jung, Wooyoung [1 ]
Kim, Youngjoo [1 ]
Bang, Hyochoong [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
来源
2016 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS) | 2016年
关键词
unmanned aerial vehicle (UAV); vision-based navigation; state estimation; autonomous landing; moving target; unscented Kalman filter (UKF); TRACKING;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper describes vision-based target state estimation approaches for autonomous landing on a moving ground target. The state of moving ground target is estimated by using vision information from a gimbaled camera on an Unmanned Aerial Vehicle (UAV). Using the information from vision system, the UAV estimates the state of a moving target on the ground using the Unscented Kalman Filter (UKF). In this paper, three types of process model are compared by numerical simulations: state in inertial frame, state in inertial frame with position uncertainty of UAV, and relative state with acceleration of UAV.
引用
收藏
页码:657 / 663
页数:7
相关论文
共 19 条
  • [1] Implementation of autonomous visual tracking and landing for a low-cost quadrotor
    Bi, Yingcai
    Duan, Haibin
    [J]. OPTIK, 2013, 124 (18): : 3296 - 3300
  • [2] Esmailifar Sayyed Majid, 2009, AUT AUT SYST 2009 IC
  • [3] Landing a VTOL Unmanned Aerial Vehicle on a Moving Platform Using Optical Flow
    Herisse, Bruno
    Hamel, Tarek
    Mahony, Robert
    Russotto, Francois-Xavier
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (01) : 77 - 89
  • [4] Hrabar Stefan, 2003, ROB AUT 2003 P ICRA, V1
  • [5] Unscented filtering and nonlinear estimation
    Julier, SJ
    Uhlmann, JK
    [J]. PROCEEDINGS OF THE IEEE, 2004, 92 (03) : 401 - 422
  • [6] Kim JeongWoon, 2014, UNM AIRCR SYST ICUAS
  • [7] Manning Sharon D., 2004, USAARL200411
  • [8] Merz T, 2006, SPRINGER TRAC ADV RO, V21, P343
  • [9] Oh So-Ryeok, 2005, ROB AUT 2005 ICRA 20
  • [10] PROCTOR AA, 2005, AIAA GUID NAV CONTR