Decomposition of a""-group-valued measures

被引:4
作者
Barbieri, Giuseppina [1 ]
Valente, Antonietta
Weber, Hans [1 ]
机构
[1] Univ Udine, I-33100 Udine, Italy
关键词
D-lattice; measure; lattice ordered group; decomposition; Hammer-Sobczyk decomposition;
D O I
10.1007/s10587-012-0065-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with decomposition theorems for modular measures A mu: L -> G defined on a D-lattice with values in a Dedekind complete a""-group. Using the celebrated band decomposition theorem of Riesz in Dedekind complete a""-groups, several decomposition theorems including the Lebesgue decomposition theorem, the Hewitt-Yosida decomposition theorem and the Alexandroff decomposition theorem are derived. Our main result-also based on the band decomposition theorem of Riesz-is the Hammer-Sobczyk decomposition for a""-group-valued modular measures on D-lattices. Recall that D-lattices (or equivalently lattice ordered effect algebras) are a common generalization of orthomodular lattices and of MV-algebras, and therefore of Boolean algebras. If L is an MV-algebra, in particular if L is a Boolean algebra, then the modular measures on L are exactly the finitely additive measures in the usual sense, and thus our results contain results for finitely additive G-valued measures defined on Boolean algebras.
引用
收藏
页码:1085 / 1100
页数:16
相关论文
共 13 条
[1]   On the Alexandroff decomposition theorem [J].
Avallone, Anna ;
Barbieri, Giuseppina ;
Vitolo, Paolo .
MATHEMATICA SLOVACA, 2008, 58 (02) :185-200
[2]   Decomposition of effect algebras and the Hammer-Sobczyk theorem [J].
Avallone, Anna ;
Barbieri, Giuseppina ;
Vitolo, Paolo ;
Weber, Hans .
ALGEBRA UNIVERSALIS, 2009, 60 (01) :1-18
[3]  
Birkhoff G., 1940, Lattice Theory, V25
[4]  
Boccuto A, 2007, REAL ANAL EXCH, V33, P91
[5]  
Congost Iglesias M., 1981, STOCHASTICA, V5, P45
[6]  
Dvurecenskij A., 2000, NEW TRENDS QUANTUM S
[7]   GROUP-VALUED MODULAR-FUNCTIONS [J].
FLEISCHER, I ;
TRAYNOR, T .
ALGEBRA UNIVERSALIS, 1982, 14 (03) :287-291
[8]  
Glass A. M. W., 1989, LATTICE ORDERED GROU
[9]  
Hammer P.C., 1944, DUKE MATH J, V11, P847
[10]  
RAO KPS, 1983, PURE APPL MATH, V109