Causal structure of the entanglement renormalization ansatz

被引:58
作者
Beny, Cedric [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
关键词
D O I
10.1088/1367-2630/15/2/023020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the multiscale entanglement renormalization ansatz (MERA) can be reformulated in terms of a causality constraint on discrete quantum dynamics. This causal structure is that of de Sitter space with a flat space-like boundary, where the volume of a spacetime region corresponds to the number of variational parameters it contains. This result clarifies the nature of the ansatz, and suggests a generalization to quantum field theory. It also constitutes an independent justification of the connection between MERA and hyperbolic geometry which was proposed as a concrete implementation of the AdS-CFT correspondence.
引用
收藏
页数:13
相关论文
共 20 条
[1]  
Arrighi Pablo, 2011, Models of Computation in Context. Proceedings 7th Conference on Computability in Europe (CiE 2011), P1, DOI 10.1007/978-3-642-21875-0_1
[2]   Unitarity plus causality implies localizability [J].
Arrighi, Pablo ;
Nesme, Vincent ;
Werner, Reinhard .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2011, 77 (02) :372-378
[3]   Causal and localizable quantum operations [J].
Beckman, D ;
Gottesman, D ;
Nielsen, MA ;
Preskill, J .
PHYSICAL REVIEW A, 2001, 64 (05) :21-523092
[4]   SPACE-TIME AS A CAUSAL SET [J].
BOMBELLI, L ;
LEE, J ;
MEYER, D ;
SORKIN, RD .
PHYSICAL REVIEW LETTERS, 1987, 59 (05) :521-524
[5]   Multiscale entanglement renormalization ansatz in two dimensions: Quantum Ising model [J].
Cincio, Lukasz ;
Dziarmaga, Jacek ;
Rams, Marek M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (24)
[6]   Simulation of interacting fermions with entanglement renormalization [J].
Corboz, Philippe ;
Evenbly, Glen ;
Verstraete, Frank ;
Vidal, Guifre .
PHYSICAL REVIEW A, 2010, 81 (01)
[7]   Unifying variational methods for simulating quantum many-body systems [J].
Dawson, C. M. ;
Eisert, J. ;
Osborne, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (13)
[8]   Tensor Network States and Geometry [J].
Evenbly, G. ;
Vidal, G. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (04) :891-918
[9]   Frustrated Antiferromagnets with Entanglement Renormalization: Ground State of the Spin-1/2 Heisenberg Model on a Kagome Lattice [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2010, 104 (18)
[10]   Entanglement Renormalization in Two Spatial Dimensions [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2009, 102 (18)