Semantically Enhanced Entity Ranking

被引:0
作者
Demartini, Gianluca [1 ]
Firan, Claudiu S. [1 ]
Iofciu, Tereza [1 ]
Nejdl, Wolfgang [1 ]
机构
[1] Leibniz Univ Hannover, Res Ctr L3S, D-30167 Hannover, Germany
来源
WEB INFORMATION SYSTEMS ENGINEERING - WISE 2008, PROCEEDINGS | 2008年 / 5175卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Users often want to find entities instead of just documents, i.e., finding documents entirely about specific real-world entities rather than general documents where the entities are merely mentioned. Searching for entities on Web scale repositories is still an open challenge as the effectiveness of ranking is usually not satisfactory. Semantics can be used in this context to improve the results leveraging on entity-driven ontologies. In this paper we propose three categories of algorithms for query adaptation, using (1) semantic information, (2) NLP1 techniques, and (3) link structure, to rank entities in Wikipedia. Our approaches focus on constructing queries using not only keywords but also additional syntactic information, while semantically relaxing the query relying on a highly accurate ontology. The results show that our approaches perform effectively, and that the combination of simple NLP, Link Analysis and semantic techniques improves the retrieval performance of entity search.
引用
收藏
页码:176 / 188
页数:13
相关论文
共 13 条
  • [1] ALLAN J, 2002, P 25 ACM SIGIR C
  • [2] ANICK PG, 1999, P 22 ACM SIGIR C
  • [3] Baeza-Yates R.A., 1999, Modern Information Retrieval
  • [4] BAST H, 2007, P 30 ACM SIGIR C
  • [5] CHENG T, 2007, P 23 INT C VER LARG
  • [6] CHERNOV S, 2006, P COL ESWC 2006
  • [7] CHIRITA PA, 2007, P 30 ACM SIGIR C
  • [8] FU L, 2007, P 6 INT SEM WEB C
  • [9] KASNECI G, 2008, P 24 INT C DAT ENG
  • [10] KASNECI G, 2007, P 16 INT WORLD WID W