Lung Cancer Detection using 3D Convolutional Neural Networks

被引:0
作者
Pradhan, Adarsh [1 ]
Sarma, Bhaskarjyothi [1 ]
Dey, Bhiman Kr [1 ]
机构
[1] Girijananda Chowdhury Inst Management & Technol, Dept Comp Sci & Engn, Gauhati, India
来源
2020 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2020) | 2020年
关键词
lung cancer; convolutional neural network; computed tomography; Hounsfield Unit; PULMONARY NODULES; SEGMENTATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A large number of cancer deaths in the world is due to lung cancer, which is caused due to unbalanced cell growth. In this paper, we used 3D Convolutional Neural Network (CNN) for identification of lung cancer from the Computed Tomography (CT) scans of the patient, since CNN makes it easier to obtain the important information from the images. Here we use the SPIE-AAPM Lung CT Challenge dataset and employ different morphological preprocessing techniques like conversion to Hounsfield Unit, removing the air region and filling the lung area to obtain the lung nodule mask. We utilize our 3D CNN model for lung cancer detection and obtain a very good evaluation of the model. We divide our preprocessed dataset into 60%, 20% and 20% for training, validation and testing respectively, and obtain training accuracy of 83.33%, testing accuracy of 100% and precision, recall, kappa-Score, and F-score of 1.
引用
收藏
页码:765 / 770
页数:6
相关论文
共 20 条
[1]  
Aggarwal T, 2015, 2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P1189, DOI 10.1109/ICACCI.2015.7275773
[2]  
[Anonymous], 2018, International Agency For Research In Cancer
[3]  
[Anonymous], Lung Cancer 101
[4]   LUNGx Challenge for computerized lung nodule classification [J].
Armato, Samuel G., III ;
Drukker, Karen ;
Li, Feng ;
Hadjiiski, Lubomir ;
Tourassi, Georgia D. ;
Engelmann, Roger M. ;
Giger, Maryellen L. ;
Redmond, George ;
Farahani, Keyvan ;
Kirby, Justin S. ;
Clarke, Laurence P. .
JOURNAL OF MEDICAL IMAGING, 2016, 3 (04)
[5]   Special Section Guest Editorial: LUNGx Challenge for computerized lung nodule classification: Reflections and lessons learned [J].
Armato, Samuel G. ;
Hadjiiski, Lubomir ;
Tourassi, Georgia D. ;
Drukker, Karen ;
Giger, Maryellen L. ;
Li, Feng ;
Redmond, George ;
Farahani, Keyvan ;
Kirby, Justin S. ;
Clarke, Laurence P. .
Journal of Medical Imaging, 2015, 2 (02)
[6]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[7]  
Guo TM, 2017, 2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), P721, DOI 10.1109/ICBDA.2017.8078730
[8]   Using Double Convolution Neural Network for Lung Cancer Stage Detection [J].
Jakimovski, Goran ;
Davcev, Danco .
APPLIED SCIENCES-BASEL, 2019, 9 (03)
[9]   3D Convolutional Neural Networks for Human Action Recognition [J].
Ji, Shuiwang ;
Xu, Wei ;
Yang, Ming ;
Yu, Kai .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) :221-231
[10]  
Kaggle, DAT SCI BOWL 2017