Quantum Communication with Polarization-Encoded Qubits under Majorization Monotone Dynamics

被引:8
作者
Czerwinski, Artur [1 ]
机构
[1] Nicolaus Copernicus Univ Torun, Fac Phys Astron & Informat, Inst Phys, Ul Grudziadzka 5, PL-87100 Torun, Poland
关键词
mathematical physics; quantum communication; quantum information; open quantum systems; majorization monotone dynamics; polarization of light; dephasing channel; trace distance; DECOHERENCE; INEQUALITIES;
D O I
10.3390/math10213932
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quantum communication can be realized by transmitting photons that carry quantum information. Due to decoherence, the information encoded in the quantum state of a single photon can be distorted, which leads to communication errors. In particular, we consider the impact of majorization monotone dynamical maps on the efficiency of quantum communication. The mathematical formalism of majorization is revised with its implications for quantum systems. The discrimination probability for two arbitrary orthogonal states is used as a figure of merit to track the quality of quantum communication in the time domain.
引用
收藏
页数:17
相关论文
共 58 条
  • [1] Variations of QKD Protocols Based on Conventional System Measurements: A Literature Review
    Abushgra, Abdulbast A.
    [J]. CRYPTOGRAPHY, 2022, 6 (01)
  • [2] Alicki R, 1987, QUANTUM DYNAMICAL SE
  • [3] On random unitary channels
    Audenaert, Koenraad M. R.
    Scheel, Stefan
    [J]. NEW JOURNAL OF PHYSICS, 2008, 10
  • [4] Dynamical decoupling in optical fibers: Preserving polarization qubits from birefringent dephasing
    Bardhan, Bhaskar Roy
    Anisimov, Petr M.
    Gupta, Manish K.
    Brown, Katherine L.
    Jones, N. Cody
    Lee, Hwang
    Dowling, Jonathan P.
    [J]. PHYSICAL REVIEW A, 2012, 85 (02):
  • [5] Quantum computing using dissipation to remain in a decoherence-free subspace
    Beige, A
    Braun, D
    Tregenna, B
    Knight, PL
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (08) : 1762 - 1765
  • [6] Bengtsson I., 2017, GEOMETRY QUANTUM STA, V2nd
  • [7] Bennett C. H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
  • [8] Bhatia M., 1997, Matrix Analysis
  • [9] Quantum Integral Inequalities in the Setting of Majorization Theory and Applications
    Bin-Mohsin, Bandar
    Javed, Muhammad Zakria
    Awan, Muhammad Uzair
    Budak, Huseyin
    Kara, Hasan
    Noor, Muhammad Aslam
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [10] Blum K., 2012, DENSITY MATRIX THEOR, V3rd