Superconvergence analysis of the nonconforming quadrilateral linear-constant scheme for Stokes equations

被引:53
作者
Liu, Huipo [2 ]
Yan, Ningning [1 ]
机构
[1] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
stokes equations; nonconforming finite element; superconvergence;
D O I
10.1007/s10444-007-9054-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the superconvergence analysis of the nonconforming quadrilateral linear-constant scheme for Stokes Equations is discussed. The superclose property is proven for rectangular meshes; then global superconvergence is derived by applying a postprocessing technique. In addition, some numerical examples are presented to demonstrate our theoretical results.
引用
收藏
页码:375 / 392
页数:18
相关论文
共 22 条
[1]  
Arnold D., 1984, CALCOLO, V21, P337, DOI 10.1007/bf02576171
[2]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[3]  
BERNARDI C, 1985, MATH COMPUT, V44, P71, DOI 10.1090/S0025-5718-1985-0771031-7
[4]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[5]  
CIARLET PG, 1978, FINITE ELEMENT ELLIP
[6]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[7]  
Girault V., 2012, FINITE ELEMENT METHO, V5
[8]  
HOOD P., 1973, COMPUT FLUIDS, V1, P73
[9]  
Hu J, 2005, J COMPUT MATH, V23, P561
[10]  
Hu Jun, 2005, Mathematica Numerica Sinica, V27, P311