Coherent Phonon Heat Conduction in Superlattices

被引:524
作者
Luckyanova, Maria N. [1 ]
Garg, Jivtesh [1 ]
Esfarjani, Keivan [1 ]
Jandl, Adam [2 ]
Bulsara, Mayank T. [2 ]
Schmidt, Aaron J. [3 ]
Minnich, Austin J. [4 ]
Chen, Shuo [5 ]
Dresselhaus, Mildred S. [6 ,7 ]
Ren, Zhifeng [5 ]
Fitzgerald, Eugene A. [2 ]
Chen, Gang [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[3] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[4] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[5] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[6] MIT, Dept Phys, Cambridge, MA 02139 USA
[7] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
THERMAL-CONDUCTIVITY; TRANSPORT; PROPAGATION; SCATTERING; NANOSCALE;
D O I
10.1126/science.1225549
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The control of heat conduction through the manipulation of phonons as coherent waves in solids is of fundamental interest and could also be exploited in applications, but coherent heat conduction has not been experimentally confirmed. We report the experimental observation of coherent heat conduction through the use of finite-thickness superlattices with varying numbers of periods. The measured thermal conductivity increased linearly with increasing total superlattice thickness over a temperature range from 30 to 150 kelvin, which is consistent with a coherent phonon heat conduction process. First-principles and Green's function-based simulations further support this coherent transport model. Accessing the coherent heat conduction regime opens a new venue for phonon engineering for an array of applications.
引用
收藏
页码:936 / 939
页数:4
相关论文
共 41 条
[1]   THERMAL-CONDUCTIVITY OF GA1-XALXAS ALLOYS [J].
AFROMOWITZ, MA .
JOURNAL OF APPLIED PHYSICS, 1973, 44 (03) :1292-1294
[2]   GREEN-FUNCTION APPROACH TO LINEAR RESPONSE IN SOLIDS [J].
BARONI, S ;
GIANNOZZI, P ;
TESTA, A .
PHYSICAL REVIEW LETTERS, 1987, 58 (18) :1861-1864
[3]   Intrinsic lattice thermal conductivity of semiconductors from first principles [J].
Broido, D. A. ;
Malorny, M. ;
Birner, G. ;
Mingo, Natalio ;
Stewart, D. A. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[4]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[5]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[6]   Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique [J].
Capinski, WS ;
Maris, HJ ;
Ruf, T ;
Cardona, M ;
Ploog, K ;
Katzer, DS .
PHYSICAL REVIEW B, 1999, 59 (12) :8105-8113
[7]   DIRECT CALCULATION OF TUNNELING CURRENT [J].
CAROLI, C ;
COMBESCO.R ;
NOZIERES, P ;
SAINTJAM.D .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (08) :916-&
[8]   Note on the conduction of heat in crystals [J].
Casimir, HBG .
PHYSICA, 1938, 5 :495-500
[9]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[10]   Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices [J].
Chen, G .
PHYSICAL REVIEW B, 1998, 57 (23) :14958-14973