Positive Solutions for Nonlinear Dirichlet Problems with Convection

被引:5
作者
Hu, Shouchuan [1 ,2 ]
Papageorgiou, Nikolas S. [3 ]
机构
[1] Shandong Normal Univ, Coll Math, Jinan, Shandong, Peoples R China
[2] Missouri State Univ, Dept Math, Springfield, MO 65804 USA
[3] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
关键词
Convection term; Indefinite drift coefficient; Nonlinear regularity; Nonlinear maximum principle; Truncation; Nonlinear Krein-Rutman theorem; P-LAPLACIAN; ELLIPTIC-EQUATIONS; DEPENDENCE;
D O I
10.1007/s00245-018-9534-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Dirichlet problem driven by thep-Laplacian, a convection term and a(p - 1)-sublinear perturbation. First we assume that the coefficient in the convection term (drift coefficient) is sign changing. Using the theory of nonlinear operators of monotone type together with suitable truncation and comparison techniques we prove the existence of a positive smooth solution. When the drift coefficient is nonnegative, we are able to relax the conditions on the data of the problem.
引用
收藏
页码:451 / 470
页数:20
相关论文
共 28 条
[11]  
Gasinski L., 2016, Exercises in Analysis. Part 2. Nonlinear Analysis
[12]  
Gasinski L., 2006, Nonlinear analysis
[13]   Positive solutions for nonlinear elliptic problems with dependence on the gradient [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) :1451-1476
[14]   Positive and negative solutions of a quasi-linear elliptic equation by a Mountain Pass method and truncature techniques [J].
Girardi, M ;
Matzeu, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (1-2) :199-210
[15]  
Ladyzhenskaya O. A., 1968, LINEAR QUASILINEAR E
[16]  
Le VK., 1998, Hiroshima Math. J, V28, P373, DOI [10.32917/hmj/1206126768, DOI 10.32917/HMJ/1206126768]
[17]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219
[18]   SOME RECENT RESULTS ON THE DIRICHLET PROBLEM FOR (p, q)-LAPLACE EQUATIONS [J].
Marano, Salvatore A. ;
Mosconi, Sunra J. N. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (02) :279-291
[19]   On a Dirichlet problem with p-Laplacian and asymmetric nonlinearity [J].
Marano, Salvatore A. ;
Papageorgiou, Nikolaos S. .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2015, 26 (01) :57-74
[20]   POSITIVE SOLUTIONS TO A DIRICHLET PROBLEM WITH p-LAPLACIAN AND CONCAVE-CONVEX NONLINEARITY DEPENDING ON A PARAMETER [J].
Marano, Salvatore A. ;
Papageorgiou, Nikolaos S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (02) :815-829