Two new hydroxynaphthyl-hydrazone based fluorogenic chemosensors R-1 and R-2 have been synthesized by Schiff base condensation of Tris(4-formylphenyl)amine with 1-hydroxynaphthalene-2-hydrazide and 1-hydroxynaphthalene-2-carbohydrazone, respectively. They are examined as highly selective and sensitive receptors for Cu2+ ions in aqueous medium. Electronic absorption as well as fluorescence titration studies of receptors R-1 and R-2 with different metal cations in H2O/CH3CN medium showed highly selective and very rapid (< 2 min) binding affinity towards Cu2+ ions even in the presence of other commonly coexisting metal ions such as Na+, K+, Mg2+, Ca2+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Cd2+ and Hg2+. Quantification of the fluorescence titration analysis indicated that these newly synthesized receptors (R-1 and R-2) can indicate the presence of Cu2+ ions even at very low concentrations of 598 and 676 ppt, respectively. In addition, the propensity of these receptors as bio-imaging fluorescent probes to detect Cu2+ ions in human cervical HeLa cancer cell lines and their cytotoxicity against HeLa cells have been investigated.