Permanents of Hessenberg (0,1)-matrices

被引:0
作者
Olesky, DD [1 ]
Shader, B
van den Driessche, P
机构
[1] Univ Victoria, Dept Comp Sci, Victoria, BC V8W 3P6, Canada
[2] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
[3] Univ Victoria, Dept Math, Victoria, BC V8W 3P4, Canada
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P (m;n) denote the maximum permanent of an n-by-n lower Hessenberg (0;1)-matrix with m entries equal to 1. A "staircased" structure for some matrices achieving this maximum is obtained, and recursive formulas for computing P (m;n) are given. This structure and results about permanents are used to determine the exact values of P (m;n) for n <= m <= 8n/3 and for all nnz(H-n)-nnz(H-[n/2]) <= m <= nnz(Hn), where nnz(H-n)=(n(2)=3n-2)/2 is the maximum number of ones in an n-by-n Hessenberg (0;1)-matrix.
引用
收藏
页数:25
相关论文
共 5 条
  • [1] Brualdi R. A., 1991, COMBINATORIAL MATRIX, V39
  • [2] MAXIMUM PERMANENTS OF MATRICES OF ZEROS AND ONES
    BRUALDI, RA
    GOLDWASSER, JL
    MICHAEL, TS
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1988, 47 (02) : 207 - 245
  • [3] An update on Minc's survey of open problems involving permanents
    Cheon, GS
    Wanless, IM
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 403 : 314 - 342
  • [4] MINC H, 1978, ENCY MATH APPL, V6
  • [5] Extremes of permanents of (0,1)-matrices
    Song, SZ
    Hwang, SG
    Rim, SH
    Cheon, GS
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 373 : 197 - 210