A non-associative generalization of effect algebras

被引:3
作者
Chajda, Ivan [2 ]
Laenger, Helmut [1 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, A-1040 Vienna, Austria
[2] Palacky Univ, Dept Algebra & Geometry, Olomouc 77146, Czech Republic
关键词
Skew effect algebra; Switching involution; Antitone involution; SSI-poset; COMMUTATIVE BASIC ALGEBRAS; PSEUDOEFFECT ALGEBRAS; LOGICS;
D O I
10.1007/s00500-012-0844-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Effect algebras play an important role in the logic of quantum mechanics. The aim of this paper is to drop the associativity of addition. However, some important properties of effect algebras are preserved, e.g. every so-called skew effect algebra is still a bounded poset with an antitone involution. Moreover, skew effect algebras are fully characterized as certain bounded posets with sectionally switching involutions.
引用
收藏
页码:1411 / 1414
页数:4
相关论文
共 10 条
[1]  
Botur M, 2008, J MULT-VALUED LOG S, V14, P69
[2]   Complete commutative basic algebras [J].
Botur, Michal ;
Halas, Radomir .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2007, 24 (02) :89-105
[3]   Commutative basic algebras and non-associative fuzzy logics [J].
Botur, Michal ;
Halas, Radomir .
ARCHIVE FOR MATHEMATICAL LOGIC, 2009, 48 (3-4) :243-255
[4]   Every effect algebra can be made into a total algebra [J].
Chajda, I. ;
Halas, R. ;
Kuhr, J. .
ALGEBRA UNIVERSALIS, 2009, 61 (02) :139-150
[5]   Effect-like algebras induced by means of basic algebras [J].
Chajda, Ivan .
MATHEMATICA SLOVACA, 2010, 60 (01) :21-32
[6]   Many-valued quantum algebras [J].
Chajda, Ivan ;
Halas, Radomir ;
Kuehr, Jan .
ALGEBRA UNIVERSALIS, 2009, 60 (01) :63-90
[7]   Pseudoeffect algebras. II. Group representations [J].
Dvurecenskij, A ;
Vetterlein, T .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (03) :703-726
[8]   Pseudoeffect algebras. I. Basic properties [J].
Dvurecenskij, A ;
Vetterlein, T .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (03) :685-701
[9]  
Dvurecenskij A., 2000, NEW TRENDS QUANTUM S
[10]   EFFECT ALGEBRAS AND UNSHARP QUANTUM-LOGICS [J].
FOULIS, DJ ;
BENNETT, MK .
FOUNDATIONS OF PHYSICS, 1994, 24 (10) :1331-1352