A Pro-Cathepsin L Mutant Is a Luminal Substrate for Endoplasmic-Reticulum-Associated Degradation in C. elegans

被引:41
作者
Miedel, Mark T. [1 ]
Graf, Nathan J.
Stephen, Kate E.
Long, Olivia S.
Pak, Stephen C.
Perlmutter, David H.
Silverman, Gary A.
Luke, Cliff J.
机构
[1] Univ Pittsburgh, Childrens Hosp Pittsburgh, Sch Med, Dept Pediat Cell Biol & Physiol,UPMC, Pittsburgh, PA 15260 USA
来源
PLOS ONE | 2012年 / 7卷 / 07期
基金
美国国家卫生研究院;
关键词
CAENORHABDITIS-ELEGANS; PROTEIN-DEGRADATION; RETRO-TRANSLOCATION; MEMBRANE-PROTEIN; PROTEASOME; ERAD; PROTEOSTASIS; EXPRESSION; DISEASE; EMBRYOGENESIS;
D O I
10.1371/journal.pone.0040145
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Endoplasmic-reticulum associated degradation (ERAD) is a major cellular misfolded protein disposal pathway that is well conserved from yeast to mammals. In yeast, a mutant of carboxypeptidase Y (CPY*) was found to be a luminal ER substrate and has served as a useful marker to help identify modifiers of the ERAD pathway. Due to its ease of genetic manipulation and the ability to conduct a genome wide screen for modifiers of molecular pathways, C. elegans has become one of the preferred metazoans for studying cell biological processes, such as ERAD. However, a marker of ERAD activity comparable to CPY* has not been developed for this model system. We describe a mutant of pro-cathepsin L fused to YFP that no longer targets to the lysosome, but is efficiently eliminated by the ERAD pathway. Using this mutant pro-cathepsin L, we found that components of the mammalian ERAD system that participate in the degradation of ER luminal substrates were conserved in C. elegans. This transgenic line will facilitate high-throughput genetic or pharmacological screens for ERAD modifiers using widefield epifluorescence microscopy.
引用
收藏
页数:13
相关论文
共 55 条
[1]   Adapting proteostasis for disease intervention [J].
Balch, William E. ;
Morimoto, Richard I. ;
Dillin, Andrew ;
Kelly, Jeffery W. .
SCIENCE, 2008, 319 (5865) :916-919
[2]   USING C. ELEGANS TO IDENTIFY THE PROTEASE TARGETS OF SERPINS IN VIVO [J].
Bhatia, Sangeeta R. ;
Miedel, Mark T. ;
Chotoo, Cavita K. ;
Graf, Nathan J. ;
Hood, Brian L. ;
Conrads, Thomas P. ;
Silverman, Gary A. ;
Luke, Cliff J. .
METHODS IN ENZYMOLOGY: BIOLOGY OF SERPINS, 2011, 499 :283-299
[3]   Cathepsin L protease (CPL-1) is essential for yolk processing during embryogenesis in Caenorhabditis elegans [J].
Britton, C ;
Murray, L .
JOURNAL OF CELL SCIENCE, 2004, 117 (21) :5133-5143
[4]   Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis [J].
Campbell, Erin M. ;
Fares, Hanna .
BMC CELL BIOLOGY, 2010, 11
[5]   Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins [J].
Carvalho, Pedro ;
Goder, Veit ;
Rapoport, Tom A. .
CELL, 2006, 126 (02) :361-373
[6]   Abnormal glycosylation of procathepsin L due to N-terminal point mutations correlates with failure to sort to lysosomes [J].
Chapman, RL ;
Kane, SE ;
Erickson, AH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (13) :8808-8816
[7]  
Chi Woo, 2006, Development, V133, P3147, DOI 10.1242/dev.02490
[8]   A kinetic mechanism for the polymerization of α1-antitrypsin [J].
Dafforn, TR ;
Mahadeva, R ;
Elliott, PR ;
Sivasothy, P ;
Lomas, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (14) :9548-9555
[9]   Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells [J].
Dantuma, NP ;
Lindsten, K ;
Glas, R ;
Jellne, M ;
Masucci, MG .
NATURE BIOTECHNOLOGY, 2000, 18 (05) :538-543
[10]   A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome [J].
Davy, A ;
Bello, P ;
Thierry-Mieg, N ;
Vaglio, P ;
Hitti, J ;
Doucette-Stamm, L ;
Thierry-Mieg, D ;
Reboul, J ;
Boulton, S ;
Walhout, AJM ;
Coux, O ;
Vidal, M .
EMBO REPORTS, 2001, 2 (09) :821-828