YAO: a generator of parallel code for variational data assimilation applications

被引:2
作者
Nardi, Luigi [1 ,2 ]
Badran, Fouad [2 ]
Fortin, Pierre [3 ,4 ]
Thiria, Sylvie [1 ]
机构
[1] Univ Paris 06, CNRS, UMR 7159, IRD,LOCEAN,MNHN,Inst Pierre Simon Lapl, 4 Pl Jussieu, F-75005 Paris, France
[2] CNAM, Ctr Etud & Rech Informat, CEDRIC, F-75003 Paris, France
[3] UPMC, Univ Paris 06, F-75252 Paris, France
[4] CNRS, LIP6, UMR 7606, F-75252 Paris, France
来源
2012 IEEE 14TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS & 2012 IEEE 9TH INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS (HPCC-ICESS) | 2012年
关键词
data assimilation; automatic parallelization; shared memory architectures; OpenMP; dependence graph; numerical model; adjoint model; INVERSION;
D O I
10.1109/HPCC.2012.38
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Variational data assimilation consists in estimating control parameters of a numerical model in order to minimize the misfit between the forecast values and the actual observations. The YAO framework is a code generator that facilitates, especially for the adjoint model, the writing and the generation of a variational data assimilation program for a given numerical application. In this paper we present how the modular graph specific to YAO enables the automatic and efficient parallelization of the generated code with OpenMP on shared memory architectures. Thanks to this modular graph we are also able to completely avoid the data race conditions (write/write conflicts). Performance tests with actual applications demonstrates good speedups on a multicore CPU.
引用
收藏
页码:224 / 232
页数:9
相关论文
共 15 条
[1]  
Allen R., 1987, Conference Record of the Fourteenth Annual ACM Symposium on Principles of Programming Languages, P63, DOI 10.1145/41625.41631
[2]  
[Anonymous], 2003, ATMOSPHERIC MODELING
[3]   Inversion of satellite ocean colour imagery and geoacoustic characterization of seabed properties:: Variational data inversion using a semi-automatic adjoint approach [J].
Badran, F. ;
Berrada, M. ;
Brajard, J. ;
Crepon, M. ;
Sorror, C. ;
Thiria, S. ;
Hermand, J. -P. ;
Meyer, M. ;
Perichon, L. ;
Asch, A. .
JOURNAL OF MARINE SYSTEMS, 2008, 69 (1-2) :126-136
[4]  
Bondhugula U., PLDI, P101
[5]   Use of a neuro-variational inversion for retrieving oceanic and atmospheric constituents from satellite ocean colour sensor: Application to absorbing aerosols [J].
Brajard, J ;
Jamet, C ;
Moulin, C ;
Thiria, S .
NEURAL NETWORKS, 2006, 19 (02) :178-185
[6]  
Cardozo de Freitas A., 2008, RECHERCHE ED, V1, P85
[7]  
Darte A., 2000, SCHEDULING AUTOMATIC
[8]  
Jin H., ISHPC 2000, P440
[9]  
Kane Adrian Taylor, 2006, THESIS
[10]  
Kennedy K., 1993, TECH REP