Giant monopole resonances and nuclear incompressibilities studied for the zero-range and separable pairing interactions

被引:42
作者
Vesely, P. [1 ]
Toivanen, J. [1 ]
Carlsson, B. G. [2 ]
Dobaczewski, J. [1 ,3 ]
Michel, N. [1 ]
Pastore, A. [4 ]
机构
[1] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland
[2] Lund Univ, LTH, Div Math Phys, S-22100 Lund, Sweden
[3] Univ Warsaw, Fac Phys, Inst Theoret Phys, PL-00681 Warsaw, Poland
[4] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France
来源
PHYSICAL REVIEW C | 2012年 / 86卷 / 02期
基金
芬兰科学院;
关键词
BREATHING-MODE; EQUATIONS; MATTER;
D O I
10.1103/PhysRevC.86.024303
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Background: Following the 2007 precise measurements of monopole strengths in tin isotopes, there has been a continuous theoretical effort to obtain a precise description of the experimental results. Up to now, there is no satisfactory explanation of why the tin nuclei appear to be significantly softer than Pb-208. Purpose: We determine the influence of finite-range and separable pairing interactions on monopole strength functions in semimagic nuclei. Methods: We employ self-consistently the quasiparticle random phase approximation on top of spherical Hartree-Fock-Bogoliubov solutions. We use the Arnoldi method to solve the linear-response problem with pairing. Results: We found that the difference between centroids of giant monopole resonances measured in lead and tin (about 1 MeV) always turns out to be overestimated by about 100%. We also found that the volume incompressibility, obtained by adjusting the liquid-drop expression to microscopic results, is significantly larger than the infinite-matter incompressibility. Conclusions: The zero-range and separable pairing forces cannot induce modifications of monopole strength functions in tin to match experimental data.
引用
收藏
页数:9
相关论文
共 38 条
[1]   Finite amplitude method for the quasiparticle random-phase approximation [J].
Avogadro, Paolo ;
Nakatsukasa, Takashi .
PHYSICAL REVIEW C, 2011, 84 (01)
[2]   OSCILLATOR BRACKETS FOR HARTREE-FOCK CALCULATIONS [J].
BARANGER, M ;
DAVIES, KTR .
NUCLEAR PHYSICS, 1966, 79 (02) :403-&
[3]  
Blaizot J.-P., 1986, Quantum Theory of Finite Systems
[4]   NUCLEAR COMPRESSIBILITIES [J].
BLAIZOT, JP .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1980, 64 (04) :171-248
[5]   Local nuclear energy density functional at next-to-next-to-next-to-leading order [J].
Carlsson, B. G. ;
Dobaczewski, J. ;
Kortelainen, M. .
PHYSICAL REVIEW C, 2008, 78 (04)
[6]   Solution of self-consistent equations for the N3LO nuclear energy density functional in spherical symmetry. The program HOSPHE (v1.02) [J].
Carlsson, B. G. ;
Dobaczewski, J. ;
Toivanen, J. ;
Vesely, P. .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (09) :1641-1657
[7]   Local nuclear energy density functional at next-to-next-to-next-to-leading order (vol 78, 044326, 2008) [J].
Carlsson, B. G. ;
Dobaczewski, J. ;
Kortelainen, M. .
PHYSICAL REVIEW C, 2010, 81 (02)
[8]   The influence of the symmetry energy on the giant monopole resonance of neutron-rich nuclei analyzed in Thomas-Fermi theory [J].
Centelles, M. ;
Patra, S. K. ;
Roca-Maza, X. ;
Sharma, B. K. ;
Stevenson, P. D. ;
Vinas, X. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2010, 37 (07)
[9]   A skyrme parametrization from subnuclear to neutron star densities - Part II. Nuclei far from stabilities [J].
Chabanat, E ;
Bonche, P ;
Haensel, P ;
Meyer, J ;
Schaeffer, R .
NUCLEAR PHYSICS A, 1998, 635 (1-2) :231-256
[10]   EFFECT OF PAIRING ON BREATHING MODE AND NUCLEAR-MATTER COMPRESSIBILITY [J].
CIVITARESE, O ;
DUMRAUF, AG ;
REBOIRO, M ;
RING, P ;
SHARMA, MM .
PHYSICAL REVIEW C, 1991, 43 (06) :2622-2630