ELECTRON WORK FUNCTION OF LANTHANIDE TRIIODIDES

被引:0
|
作者
Dunaev, A. M. [1 ]
Motalov, V. B. [1 ]
Kudin, L. S. [1 ]
机构
[1] Ivanovo State Univ Chem & Technol, Dept Phys, Sheremetevskiy Ave 7, Ivanovo 153000, Russia
来源
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA | 2020年 / 63卷 / 11期
关键词
electron work function; lanthanides; iodides; thermodynamics; Knudsen effusion mass spectrometry; FORMATION ENTHALPIES; THERMODYNAMIC PROPERTIES; SUBLIMATION ENTHALPIES; IONS LN; LA; STABILITY; TERBIUM; VAPOR; LU; GD;
D O I
10.6060/ivkkt.20206311.6292
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Desorption enthalpies of LnI(4)(-) and Ln(2)I(7)(-) associative ions (Ln = La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, and Lu) and the enthalpy of sublimation of LnI(3) molecules were determined by Knudsen effusion mass spectrometric technique. These data were used to calculate the effective values of electron work function phi(e) of polycrystalline samples of lanthanide triiodides LnI(3) for the first time. The calculation methodology is based on the study of thermochemical cycles, which include atoms, molecules, ions, and electrons being in thermodynamic equilibrium with the LnI(3) crystal inside the effusion cell. The values obtained for different lanthanides turned out to be close. They lie in the range of about 2.4 - 4.4 eV with an average value in the series: phi(e) = 3.2 +/- 0.3 eV. The latter value is close to those for previously studied lanthanide tribromides. No secondary periodicity of phi(e) was found within the calculated errors along the lanthanide series. The results obtained are in quantitative agreement with the theoretical calculation of the values of the band gap of lanthanide triiodides. Comparison of phi(e) with other classes of lanthanide compounds such as oxides, hexaborides, and lanthanide metals shows relatively high electron emission ability yielding only to alkali and alkali-earth metals.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
  • [1] A high-temperature mass-spectrometric method for determination of the electron work function of ionic crystals: Lanthanum, cerium, and praseodymium triiodides
    Dunaev, A. M.
    Motalov, V. B.
    Kudin, L. S.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2017, 87 (03) : 632 - 638
  • [2] On the structural component of the electron work function
    Loskutov S.V.
    Russian Physics Journal, 2006, 49 (8) : 882 - 884
  • [3] Lithium electron work function: State of the art
    B. B. Alchagirov
    L. Kh. Afaunova
    F. F. Dyshekova
    R. Kh. Arkhestov
    Technical Physics, 2015, 60 : 292 - 299
  • [4] Electron work function in alloys with alkali metals
    B. B. Alchagirov
    R. Kh. Arkhestov
    F. F. Dyshekova
    Technical Physics, 2012, 57 : 1541 - 1546
  • [5] Electron work function in alloys with alkali metals
    Alchagirov, B. B.
    Arkhestov, R. Kh.
    Dyshekova, F. F.
    TECHNICAL PHYSICS, 2012, 57 (11) : 1541 - 1546
  • [6] Molecular and ionic sublimation of the lanthanide triiodides. Thermochemical properties of LnI3 and Ln2I6 molecules and LnI4- and Ln2I7- ions
    Motalov, V. B.
    Kudin, L. S.
    Dunaev, A. M.
    Butman, M. F.
    Kramer, K. W.
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2021, 465
  • [7] A study on the kinetic response of the electron work function to wear
    Li, W
    Li, DY
    WEAR, 2003, 255 : 333 - 340
  • [9] An electron work function based mechanism for solid solution hardening
    Lu, Hao
    Li, Lei
    Huang, Xiaochen
    Li, Dongyang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 737 : 323 - 329
  • [10] Effect of grain boundaries on the electron work function of nanocrystalline nickel
    R. Kh. Khisamov
    I. M. Safarov
    R. R. Mulyukov
    Yu. M. Yumaguzin
    Physics of the Solid State, 2013, 55 : 1 - 4