Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma

被引:27
作者
Park, Ji Eun [1 ,2 ]
Ham, Sungwon [3 ]
Kim, Ho Sung [1 ,2 ]
Park, Seo Young [4 ]
Yun, Jihye [3 ]
Lee, Hyunna [5 ]
Choi, Seung Hong [6 ]
Kim, Namkug [1 ,2 ,3 ]
机构
[1] Univ Ulsan, Dept Radiol, Asan Med Ctr, Coll Med, 43 Olymp Ro 88, Seoul 05505, South Korea
[2] Univ Ulsan, Res Inst Radiol, Asan Med Ctr, Coll Med, 43 Olymp Ro 88, Seoul 05505, South Korea
[3] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Convergence Med, Seoul, South Korea
[4] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Clin Epidemiol & Biostat, Seoul, South Korea
[5] Asan Med Ctr, Asan Inst Life Sci, Hlth Innovat Big Data Ctr, Seoul, South Korea
[6] Seoul Natl Univ, Coll Med, Dept Radiol, Seoul 03080, South Korea
基金
新加坡国家研究基金会;
关键词
Machine learning; Glioblastoma; Magnetic resonance imaging; Reproducibility of results; IMAGING PREDICTOR; SURVIVAL; TUMOR; CLASSIFICATION; PERFORMANCE; PROGRESSION;
D O I
10.1007/s00330-020-07414-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Deep learning-based automatic segmentation (DLAS) helps the reproducibility of radiomics features, but its effect on radiomics modeling is unknown. We therefore evaluated whether DLAS can robustly extract anatomical and physiological MRI features, thereby assisting in the accurate assessment of treatment response in glioblastoma patients. Methods A DLAS model was trained on 238 glioblastomas and validated on an independent set of 98 pre- and 86 post-treatment glioblastomas from two tertiary hospitals. A total of 1618 radiomics features from contrast-enhanced T1-weighted images (CE-T1w) and histogram features from apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) mapping were extracted. The diagnostic performance of radiomics features and ADC and CBV parameters for identifying treatment response was tested using area under the curve (AUC) from receiver operating characteristics analysis. Feature reproducibility was tested using a 0.80 cutoff for concordance correlation coefficients. Results Reproducibility was excellent for ADC and CBV features (ICC, 0.82-0.99) and first-order features (pre- and post-treatment, 100% and 94.1% remained), but lower for texture (79.0% and 69.1% remained) and wavelet-transformed (81.8% and 74.9% remained) features of CE-T1w. DLAS-based radiomics showed similar performance to human-performed segmentations in internal validation (AUC, 0.81 [95% CI, 0.64-0.99] vs. AUC, 0.81 [0.60-1.00], p = 0.80), but slightly lower performance in external validation (AUC, 0.78 [0.61-0.95] vs. AUC, 0.65 [0.46-0.84], p = 0.23). Conclusion DLAS-based feature extraction showed high reproducibility for first-order features from anatomical and physiological MRI, and comparable diagnostic performance to human manual segmentations in the identification of pseudoprogression, supporting the utility of DLAS in quantitative MRI analysis.
引用
收藏
页码:3127 / 3137
页数:11
相关论文
共 38 条
[1]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[2]   Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Preciction [J].
Bae, Sohi ;
Choi, Yoon Seong ;
Ahn, Sung Soo ;
Chang, Jong Hee ;
Kang, Seok-Gu ;
Kim, Eui Hyun ;
Kim, Se Hoon ;
Lee, Seung-Koo .
RADIOLOGY, 2018, 289 (03) :797-806
[3]   Robustness and Reproducibility of Radiomics in Magnetic Resonance Imaging A Phantom Study [J].
Baessler, Bettina ;
Weiss, Kilian ;
dos Santos, Daniel Pinto .
INVESTIGATIVE RADIOLOGY, 2019, 54 (04) :221-228
[4]   Interreader Variability of Dynamic Contrast-enhanced MRI of Recurrent Glioblastoma: The Multicenter ACRIN 6677/RTOG 0625 Study [J].
Barboriak, Daniel P. ;
Zhang, Zheng ;
Desai, Pratikkumar ;
Snyder, Bradley S. ;
Safriel, Yair ;
McKinstry, Robert C. ;
Bokstrin, Felix ;
Sorensen, Gregory ;
Gilbert, Mark R. ;
Boxerman, Jerrold L. .
RADIOLOGY, 2019, 290 (02) :467-476
[5]   Recurrent Glioblastoma: Optimum Area under the Curve Method Derived from Dynamic Contrast-enhanced T1-weighted Perfusion MR Imaging [J].
Chung, Won Jung ;
Kim, Ho Sung ;
Kim, Namkug ;
Choi, Choong Gon ;
Kim, Sang Joon .
RADIOLOGY, 2013, 269 (02) :560-567
[6]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302
[7]   Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials [J].
Ellingson, Benjamin M. ;
Bendszus, Martin ;
Boxerman, Jerrold ;
Barboriak, Daniel ;
Erickson, Bradley J. ;
Smits, Marion ;
Nelson, Sarah J. ;
Gerstner, Elizabeth ;
Alexander, Brian ;
Goldmacher, Gregory ;
Wick, Wolfgang ;
Vogelbaum, Michael ;
Weller, Michael ;
Galanis, Evanthia ;
Kalpathy-Cramer, Jayashree ;
Shankar, Lalitha ;
Jacobs, Paula ;
Pope, Whitney B. ;
Yang, Dewen ;
Chung, Caroline ;
Knopp, Michael V. ;
Cha, Soonme ;
van den Bent, Martin J. ;
Chang, Susan ;
Al Yung, W. K. ;
Cloughesy, Timothy F. ;
Wen, Patrick Y. ;
Gilbert, Mark R. .
NEURO-ONCOLOGY, 2015, 17 (09) :1188-1198
[8]   Functional diffusion maps (fDMs) evaluated before and after radiochemotherapy predict progression-free and overall survival in newly diagnosed glioblastoma [J].
Ellingson, Benjamin M. ;
Cloughesy, Timothy F. ;
Zaw, Taryar ;
Lai, Albert ;
Nghiemphu, Phioanh L. ;
Harris, Robert ;
Lalezari, Shadi ;
Wagle, Naveed ;
Naeini, Kourosh M. ;
Carrillo, Jose ;
Liau, Linda M. ;
Pope, Whitney B. .
NEURO-ONCOLOGY, 2012, 14 (03) :333-343
[9]   Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation [J].
Estienne, Theo ;
Lerousseau, Marvin ;
Vakalopoulou, Maria ;
Andres, Emilie Alvarez ;
Battistella, Enzo ;
Carre, Alexandre ;
Chandra, Siddhartha ;
Christodoulidis, Stergios ;
Sahasrabudhe, Mihir ;
Sun, Roger ;
Robert, Charlotte ;
Talbot, Hugues ;
Paragios, Nikos ;
Deutsch, Eric .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14 (14)
[10]   Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: development and multicenter external validation [J].
Kang, Daesung ;
Park, Ji Eun ;
Kim, Young-Hoon ;
Kim, Jeong Hoon ;
Oh, Joo Young ;
Kim, Jungyoun ;
Kim, Yikyung ;
Kim, Sung Tae ;
Kim, Ho Sung .
NEURO-ONCOLOGY, 2018, 20 (09) :1251-1261