Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas

被引:42
作者
Nawrocki, W. J. [1 ,2 ,3 ]
Bailleul, B. [1 ]
Cardol, P. [2 ]
Rappaport, F. [1 ]
Wollman, F. -A. [1 ]
Joliot, P. [1 ]
机构
[1] Sorbonne Univ, CNRS, UMR 7141, Inst Biol Physicochim, 13 Rue P&M Curie, F-75005 Paris, France
[2] Univ Liege, Inst Bot, Lab Genet & Physiol Microalgues, 4 Chemin Vallee, B-4000 Liege, Belgium
[3] Vrije Univ Amsterdam, Dept Phys & Astron, De Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2019年 / 1860卷 / 05期
关键词
Photosynthesis; Photosystem I; Cytochrome b6f; Cyclic electron flow; Anoxia; FERREDOXIN-PLASTOQUINONE REDUCTASE; PLASTID TERMINAL OXIDASE; PHOTOSYSTEM-I; FLAVODIIRON PROTEINS; STATE TRANSITIONS; REDOX; CHLOROPLAST; LIGHT; INVOLVEMENT; REINHARDTII;
D O I
10.1016/j.bbabio.2019.01.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cyclic electron flow (CEF) is defined as a return of the reductants from the acceptor side of Photosystem I (PSI) to the pool of its donors via the cytochrome b(6)f. It is described to be complementary to the linear electron flow and essential for photosynthesis. However, despite many efforts aimed to characterize CEF, its pathway and its regulation modes remain equivocal, and its physiological significance is still not clear. Here we use novel spectroscopic to measure the rate of CEF at the onset of light in the green alga Chlamydomonas reinhardtii. The initial redox state of the photosynthetic chain or the oxygen concentration do not modify the initial maximal rate of CEF (60 electrons per second per PSI) but rather strongly influence its duration. Neither the maximal rate nor the duration of CEF are different in the pgrl1 mutant compared to the wild type, disqualifying PGRL1 as the ferredoxin-plastoquinone oxidoreductase involved in the CEF mechanism.
引用
收藏
页码:425 / 432
页数:8
相关论文
共 43 条
[1]   Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain [J].
Allen, JF .
TRENDS IN PLANT SCIENCE, 2003, 8 (01) :15-19
[2]   The plastoquinone pool, poised for cyclic electron flow? [J].
Alric, Jean .
FRONTIERS IN PLANT SCIENCE, 2015, 6
[3]   Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (II) Involvement of the PGR5-PGRL1 pathway under anaerobic conditions [J].
Alric, Jean .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2014, 1837 (06) :825-834
[4]   Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions [J].
Alric, Jean ;
Lavergne, Jerome ;
Rappaport, Fabrice .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2010, 1797 (01) :44-51
[5]   PHOTOSYNTHESIS BY ISOLATED CHLOROPLASTS [J].
ARNON, DI ;
ALLEN, MB ;
WHATLEY, FR .
NATURE, 1954, 174 (4426) :394-396
[6]   Electrochromism: a useful probe to study algal photosynthesis [J].
Bailleul, Benjamin ;
Cardol, Pierre ;
Breyton, Cecile ;
Finazzi, Giovanni .
PHOTOSYNTHESIS RESEARCH, 2010, 106 (1-2) :179-189
[7]   CYCLIC PHOTOPHOSPHORYLATION AND ELECTRON-TRANSPORT [J].
BENDALL, DS ;
MANASSE, RS .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1995, 1229 (01) :23-38
[8]   Electron transfer and arrangement of the redox cofactors in photosystem I [J].
Brettel, K .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1997, 1318 (03) :322-373
[9]   Flavodiiron Proteins Promote Fast and Transient O2 Photoreduction in Chlamydomonas1[OPEN] [J].
Chaux, Frederic ;
Burlacot, Adrien ;
Mekhalfi, Malika ;
Auroy, Pascaline ;
Blangy, Stephanie ;
Richaud, Pierre ;
Peltier, Gilles .
PLANT PHYSIOLOGY, 2017, 174 (03) :1825-1836
[10]   PHOTOSYSTEM-I CYCLIC ELECTRON-TRANSPORT - MEASUREMENT OF FERREDOXIN-PLASTOQUINONE REDUCTASE-ACTIVITY [J].
CLELAND, RE ;
BENDALL, DS .
PHOTOSYNTHESIS RESEARCH, 1992, 34 (03) :409-418