Distinct distances in three and higher dimensions

被引:11
作者
Aronov, B [1 ]
Pach, J
Sharir, M
Tardos, G
机构
[1] Polytech Univ, Dept Comp & Informat Sci, Brooklyn, NY 11201 USA
[2] CUNY City Coll, New York, NY 10012 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[4] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[5] Hungarian Acad Sci, Renyi Inst, H-1354 Budapest, Hungary
关键词
D O I
10.1017/S0963548304006091
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Improving an old result of Clarkson, Edelsbrunner, Guibas, Sharir and Welzl, we show that the number of distinct distances determined by a set P of n points in three-dimensional space is Omega(n(77/141-epsilon)) = Omega(n(0.546)), for any epsilon > 0. Moreover, there always exists a point p is an element of P from which there are at least so many distinct distances to the remaining elements of P. The same result holds for points on the three-dimensional sphere. As a consequence, we obtain analogous results in higher dimensions.
引用
收藏
页码:283 / 293
页数:11
相关论文
共 19 条
[1]  
ARONOV B, 2002, IN PRESS DISCRETE CO
[2]   A DETERMINISTIC VIEW OF RANDOM SAMPLING AND ITS USE IN GEOMETRY [J].
CHAZELLE, B ;
FRIEDMAN, J .
COMBINATORICA, 1990, 10 (03) :229-249
[3]   THE NUMBER OF DIFFERENT DISTANCES DETERMINED BY A SET OF POINTS IN THE EUCLIDEAN PLANE [J].
CHUNG, FRK ;
SZEMEREDI, E ;
TROTTER, WT .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (01) :1-11
[4]   COMBINATORIAL COMPLEXITY-BOUNDS FOR ARRANGEMENTS OF CURVES AND SPHERES [J].
CLARKSON, KL ;
EDELSBRUNNER, H ;
GUIBAS, LJ ;
SHARIR, M ;
WELZL, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (02) :99-160
[5]  
Elekes G, 2002, BOLYAI SOC MATH STUD, V11, P241
[6]  
Elekes Gy., 1999, Period. Math. Hung, V38, P173
[7]  
Erd??s P., 1946, AM MATH MONTHLY, V53, P248, DOI [10.1080/00029890.1946.11991674, DOI 10.1080/00029890.1946.11991674]
[8]  
Erdos P, 1996, BOLYAI MATH STUD, V2, P97
[9]  
KATZ N, 2004, IN PRESS CONT MATH A
[10]  
KATZ NH, UNPUB COMBINATORICA