An Automated Common Algorithm for Planetary Boundary Layer Retrievals Using Aerosol Lidars in Support of the US EPA Photochemical Assessment Monitoring Stations Program

被引:18
作者
Caicedo, Vanessa [1 ,2 ]
Delgado, Ruben [1 ,2 ]
Sakai, Ricardo [3 ]
Knepp, Travis [4 ,5 ]
Williams, David [6 ]
Cavender, Kevin [7 ]
Lefer, Barry [8 ]
Szykman, James [5 ,6 ]
机构
[1] Joint Ctr Earth Syst Technol, Baltimore, MD 21250 USA
[2] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA
[3] Howard Univ, Washington, DC 20059 USA
[4] Sci Syst & Applicat Inc, Hampton, VA USA
[5] NASA, Langley Res Ctr, Hampton, VA 23665 USA
[6] US EPA, Off Res & Dev, Res Triangle Pk, NC 27711 USA
[7] US EPA, Off Air Qual Planning & Stand, Res Triangle Pk, NC 27711 USA
[8] Natl Aeronaut & Space Adm Headquarters, Washington, DC USA
基金
美国海洋和大气管理局;
关键词
Boundary layer; Algorithms; Lidars/Lidar observations; Remote sensing; Air quality; ENTRAINMENT ZONE THICKNESS; MIXING-HEIGHT; BACKSCATTER; CEILOMETERS; RANGE; DEPTH; MODEL; 1ST; TOP;
D O I
10.1175/JTECH-D-20-0050.1
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A unique automated planetary boundary layer (PBL) retrieval algorithm is proposed as a common cross-platform method for use with commercially available ceilometers for implementation under the redesigned U.S. Environmental Protection Agency Photochemical Assessment Monitoring Stations program. This algorithm addresses instrument signal quality and screens for precipitation and cloud layers before the implementation of the retrieval method using the Haar wavelet covariance transform. Layer attribution for the PBL height is supported with the use of continuation and time-tracking parameters, and uncertainties are calculated for individual PBL height retrievals. Commercial ceilometer retrievals are tested against radiosonde PBL height and cloud-base height during morning and late-afternoon transition times, critical to air quality model prediction and when retrieval algorithms struggle to identify PBL heights. A total of 58 radiosonde profiles were used, and retrievals for nocturnal stable layers, residual layers, and mixing layers were assessed. Overall good agreement was found for all comparisons, with one system showing limitations for the cases of nighttime surface stable layers and daytime mixing layer. It is recommended that nighttime shallow stable-layer retrievals be performed with a recommended minimum height or with additional verification. Retrievals of residual-layer heights and mixing-layer comparisons revealed overall good correlations with radiosonde heights (square of correlation coefficients r(2) ranging from 0.89 to 0.96, and bias ranging from approximately -131 to +63m for the residual layer and r(2) from 0.88 to 0.97 and bias from -119 to +101m for the mixing layer).
引用
收藏
页码:1847 / 1864
页数:18
相关论文
共 89 条
[1]   Continuous monitoring of the boundary-layer top with lidar [J].
Baars, H. ;
Ansmann, A. ;
Engelmann, R. ;
Althausen, D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (23) :7281-7296
[2]   An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling [J].
Baars, Holger ;
Kanitz, Thomas ;
Engelmann, Ronny ;
Althausen, Dietrich ;
Heese, Birgit ;
Komppula, Mika ;
Preissler, Jana ;
Tesche, Matthias ;
Ansmann, Albert ;
Wandinger, Ulla ;
Lim, Jae-Hyun ;
Ahn, Joon Young ;
Stachlewska, Iwona S. ;
Amiridis, Vassilis ;
Marinou, Eleni ;
Seifert, Patric ;
Hofer, Julian ;
Skupin, Annett ;
Schneider, Florian ;
Bohlmann, Stephanie ;
Foth, Andreas ;
Bley, Sebastian ;
Pfuller, Anne ;
Giannakaki, Eleni ;
Lihavainen, Heikki ;
Viisanen, Yrjo ;
Hooda, Rakesh Kumar ;
Pereira, Sergio Nepomuceno ;
Bortoli, Daniele ;
Wagner, Frank ;
Mattis, Ina ;
Janicka, Lucja ;
Markowicz, Krzysztof M. ;
Achtert, Peggy ;
Artaxo, Paulo ;
Pauliquevis, Theotonio ;
Souza, Rodrigo A. F. ;
Sharma, Ved Prakesh ;
van Zyl, Pieter Gideon ;
Beukes, Johan Paul ;
Sun, Junying ;
Rohwer, Erich G. ;
Deng, Ruru ;
Mamouri, Rodanthi-Elisavet ;
Zamorano, Felix .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (08) :5111-5137
[3]   Error estimation for localized signal properties: application to atmospheric mixing height retrievals [J].
Biavati, G. ;
Feist, D. G. ;
Gerbig, C. ;
Kretschmer, R. .
Atmospheric Measurement Techniques, 2015, 8 (10) :4215-4230
[4]   Doppler Lidar Observations of the Mixing Height in Indianapolis Using an Automated Composite Fuzzy Logic Approach [J].
Bonin, Timothy A. ;
Carroll, Brian J. ;
Hardesty, R. Michael ;
Brewer, W. Alan ;
Hajny, Kristian ;
Salmon, Olivia E. ;
Shepson, Paul B. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2018, 35 (03) :473-490
[5]   RECENT CHANGES IN THE NORTH-AMERICAN ARCTIC BOUNDARY-LAYER IN WINTER [J].
BRADLEY, RS ;
KEIMIG, FT .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D5) :8851-8858
[6]  
Brooks IM, 2003, J ATMOS OCEAN TECH, V20, P1092, DOI 10.1175/1520-0426(2003)020<1092:FBLTAO>2.0.CO
[7]  
2
[8]   Bay Breeze and Sea Breeze Circulation Impacts on the Planetary Boundary Layer and Air Quality From an Observed and Modeled DISCOVER-AQ Texas Case Study [J].
Caicedo, V ;
Rappenglueck, B. ;
Cuchiara, G. ;
Flynn, J. ;
Ferrare, R. ;
Scarino, A. J. ;
Berkoff, T. ;
Senff, C. ;
Langford, A. ;
Lefer, B. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (13) :7359-7378
[9]   Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data [J].
Caicedo, Vanessa ;
Rappengluck, Bernhard ;
Lefer, Barry ;
Morris, Gary ;
Toledo, Daniel ;
Delgado, Ruben .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (04) :1609-1622
[10]  
Cohn SA, 2000, J APPL METEOROL, V39, P1233, DOI 10.1175/1520-0450(2000)039<1233:BLHAEZ>2.0.CO