Robust stability bounds of uncertain fractional-order systems

被引:14
作者
Ma, YingDong [1 ,2 ]
Lu, Jun-Guo [1 ,2 ]
Chen, WeiDong [1 ,2 ]
Chen, YangQuan [3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
[2] Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
[3] Univ Calif Merced, Sch Engn, Mech Embedded Syst & Automat MESA Lab, Merced, CA 95343 USA
基金
中国国家自然科学基金;
关键词
fractional-order system; linear matrix inequality; robust stability bound; uncertainty; LINEAR-SYSTEMS; STABILIZATION; TRANSIENTS; KINETICS;
D O I
10.2478/s13540-014-0159-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the robust stability bound problem of uncertain fractional-order systems. The system considered is subject either to a two-norm bounded uncertainty or to a infinity-norm bounded uncertainty. The robust stability bounds on the uncertainties are derived. The fact that these bounds are not exceeded guarantees that the asymptotical stability of the uncertain fractional-order systems is preserved when the nominal fractional-order systems are already asymptotically stable. Simulation examples are given to demonstrate the effectiveness of the proposed theoretical results.
引用
收藏
页码:136 / 153
页数:18
相关论文
共 44 条
[1]   Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality [J].
Ahn, Hyo-Sung ;
Chen, YangQuan ;
Podlubny, Igor .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :27-34
[2]   Necessary and sufficient stability condition of fractional-order interval linear systems [J].
Ahn, Hyo-Sung ;
Chen, YangQuan .
AUTOMATICA, 2008, 44 (11) :2985-2988
[3]  
[Anonymous], 1997, SYST ANAL MODELLING
[4]  
[Anonymous], P 2 IEEE INT C COMP
[5]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]   Newtonian law with memory [J].
Baleanu, Dumitru ;
Golmankhaneh, Alireza K. ;
Golmankhaneh, Ali K. ;
Nigmatullin, Raoul R. .
NONLINEAR DYNAMICS, 2010, 60 (1-2) :81-86
[7]  
Cafagna D, 2007, IEE IND ELECTRON M, V1, P35, DOI 10.1109/MIE.2007.901479
[8]   Robust stability check of fractional order linear time invariant systems with interval uncertainties [J].
Chen, YangQuan ;
Ahn, Hyo-Sung ;
Podlubny, Igor .
SIGNAL PROCESSING, 2006, 86 (10) :2611-2618
[9]   Stability analysis of Caputo fractional-order nonlinear systems revisited [J].
Delavari, Hadi ;
Baleanu, Dumitru ;
Sadati, Jalil .
NONLINEAR DYNAMICS, 2012, 67 (04) :2433-2439
[10]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22