Logarithmic derivative of the Euler Γ-function in Clifford analysis

被引:0
作者
Laville, G
Randriamihamison, L
机构
[1] Univ Caen, Lab Math Nicolas Oresme, CNRS, UMR 6139, F-14032 Caen, France
[2] Inst Natl Polytech Toulouse, CNAM, IPST, F-31029 Toulouse, France
关键词
non-commutative analysis; Clifford analysis; psi-function; Euler constant; dilogarithm function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The logarithmic derivative of the Gamma-function, namely the psi-function, has numerous applications. We define analogous functions in a four dimensional space. We cut lattices and obtain Clifford-valued functions. These functions are holomorphic cliffordian and have similar properties as the psi-function. These new functions show links between well-known constants: the Euler gamma constant and some generalisations, zeta(R)(2), zeta(R)(3). We get also the Riemann zeta function and the Epstein zeta functions.
引用
收藏
页码:695 / 728
页数:34
相关论文
共 12 条
[1]  
Delanghe R., 1992, MATH ITS APPLICATION, V53
[2]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[3]  
Gurlebeck K., 1997, Quaternionic and Clifford Calculus for Physicists Engineers
[4]  
Krausshar RS, 2001, Z ANAL ANWEND, V20, P1007
[5]  
KRAUSSHAR RS, 2000, THESIS U AACHEN
[6]  
LAVILLE G, 2001, COMPLEX VARIABLES, V45, P297
[7]  
Laville G., 1998, Adv. Appl. Clifford Algebr, V8, P323, DOI [10.1007/BF03043103, DOI 10.1007/BF03043103]
[8]  
Laville G., 2002, Complex Variables, Theory and Application, V47, P787, DOI [10.1080/02781070290032243, DOI 10.1080/02781070290032243]
[9]  
Lewin L., 1981, Polylogarithms and Associated Functions
[10]  
SOMMEN F, 1988, J MATH ANAL APPL, V130, P100