Optimum Linear Codes with Support Constraints over Small Fields

被引:0
作者
Yildiz, Hikmet [1 ]
Hassibi, Babak [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
来源
2018 IEEE INFORMATION THEORY WORKSHOP (ITW) | 2018年
关键词
Linear codes; minimum distance;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of designing optimal linear codes ( in terms of having the largest minimum distance) subject to a support constraint on the generator matrix. We show that the largest minimum distance can be achieved by a subcode of a Reed-Solomon code of small field size and with the same minimum distance. As a by-product of this result, we settle the GM-MDS conjecture of Dau et al. in the affirmative.
引用
收藏
页码:375 / 379
页数:5
相关论文
共 12 条
  • [1] [Anonymous], 2013, P OPT FIB COMM C EXP
  • [2] On Simple Multiple Access Networks
    Dau, Son Hoang
    Song, Wentu
    Yuen, Chau
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2015, 33 (02) : 236 - 249
  • [3] Dau SH, 2014, IEEE INT SYMP INFO, P1787, DOI 10.1109/ISIT.2014.6875141
  • [4] Halbawi W, 2016, IEEE INT SYMP INFO, P935, DOI 10.1109/ISIT.2016.7541436
  • [5] Halbawi W, 2014, IEEE INT SYMP INFO, P651, DOI 10.1109/ISIT.2014.6874913
  • [6] Heidarzadeh A, 2017, IEEE INT SYMP INFO, P11, DOI 10.1109/ISIT.2017.8006480
  • [7] Khina A, 2016, IEEE INT SYMP INFO, P2404, DOI 10.1109/ISIT.2016.7541730
  • [8] Lovett S., 2018, ARXIV180302523
  • [9] Song W., 2018, ARXIV180102315
  • [10] Yan MX, 2014, IEEE INT SYMP INFO, P1366, DOI 10.1109/ISIT.2014.6875056