Orthogonal wavelets on the cantor dyadic group

被引:86
作者
Lang, WC
机构
[1] Department of Mathematics, Indiana University Southeast, New Albany
关键词
orthogonal wavelets; locally compact Abelian groups; Cantor dyadic group;
D O I
10.1137/S0036141093248049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based upon the shift operator as a dilation operator, multiresolution analyses are built on the Cantor dyadic group. A regularity condition is given for wavelets and sufficient conditions are given on scaling filters for regular orthonormal wavelets to occur. Examples of wavelets given include the Haar functions and certain lacunary Walsh function series analogous to the compactly supported wavelets of I. Daubechies.
引用
收藏
页码:305 / 312
页数:8
相关论文
共 11 条
[1]   GENERAL EXISTENCE THEOREMS FOR ORTHONORMAL WAVELETS, AN ABSTRACT APPROACH [J].
BAGGETT, L ;
CAREY, A ;
MORAN, W ;
OHRING, P .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1995, 31 (01) :95-111
[2]  
Daubechies I, 1992, LECTURES WAVELETS
[3]  
EDWARDS RE, 1985, LITTLEWOOD PALEY MUL
[4]   MULTIRESOLUTION ANALYSIS, HAAR BASES, AND SELF-SIMILAR TILINGS OF RN [J].
GROCHENIG, K ;
MADYCH, WR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :556-568
[5]  
HEWITT E, 1963, ABSTRACT HARMONIC AN, V1
[6]  
Kluv'anek I., 1965, MATEMATICKO FYZIKALN, V15
[7]   ONDELETTE BASE ON STRATIFIED LIE-GROUPS [J].
LEMARIE, PG .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1989, 117 (02) :211-232
[9]  
Meyer Y., 1990, ONDELETTES OPERATEUR
[10]  
Schipp F., 1990, WALSH SERIES INTRO D