4E analysis and multi objective optimization of a micro gas turbine and solid oxide fuel cell hybrid combined heat and power system

被引:66
作者
Sanaye, Sepehr [1 ]
Katebi, Arash [1 ]
机构
[1] IUST, Dept Mech Engn, ESIL, Tehran 16844, Iran
关键词
Solid oxide fuel cell; Micro gas turbine; CHP system; 4E analysis and optimization; CYCLES IRSOFC-GT; EXERGY ANALYSIS; PART; ENERGY; DESIGN; MODEL;
D O I
10.1016/j.jpowsour.2013.08.065
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Energy, exergy, economic and environmental (4E) analysis and optimization of a hybrid solid oxide fuel cell and micro gas turbine (SOFC-MGT) system for use as combined generation of heat and power (CHP) is investigated in this paper. The hybrid system is modeled and performance related results are validated using available data in literature. Then a multi-objective optimization approach based on genetic algorithm is incorporated. Eight system design parameters are selected for the optimization procedure. System exergy efficiency and total cost rate (including capital or investment cost, operational cost and penalty cost of environmental emissions) are the two objectives. The effects of fuel unit cost, capital investment and system power output on optimum design parameters are also investigated. It is observed that the most sensitive and important design parameter in the hybrid system is fuel cell current density which has a significant effect on the balance between system cost and efficiency. The selected design point from the Pareto distribution of optimization results indicates a total system exergy efficiency of 60.7%, with estimated electrical energy cost 0.057 $kW(-1) h(-1), and payback period of about 6.3 years for the investment. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:294 / 306
页数:13
相关论文
共 33 条
[1]   Thermo-economic optimization of a solid oxide fuel cell, gas turbine hybrid system [J].
Autissier, N. ;
Palazzi, F. ;
Marechal, F. ;
van Herle, J. ;
Favrat, D. .
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2007, 4 (02) :123-129
[2]   Energy and exergy analysis of internal reforming solid oxide fuel cell-gas turbine hybrid system [J].
Bavarsad, Pegah Ghanbari .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (17) :4591-4599
[3]  
Bejan A, 1996, THERMAL DESIGN OPTIM
[4]  
Braun R.J., 2002, THESIS U WISCONSIN M
[5]   Full load synthesis/desigin optimization of a hybrid SOFC-GT power plant [J].
Calise, F. ;
d'Accadia, M. Dentice ;
Vanoli, L. ;
von Spakovsky, Michael R. .
ENERGY, 2007, 32 (04) :446-458
[6]   Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)-Gas Turbine System [J].
Calise, F. ;
d'Accadia, M. Dentice ;
Palombo, A. ;
Vanoli, L. .
ENERGY, 2006, 31 (15) :3278-3299
[7]   Single-level optimization of a hybrid SOFC-GT power plant [J].
Calise, F. ;
d'Accadia, M. Dentice ;
Vanoli, L. ;
von Spakovsky, M. R. .
JOURNAL OF POWER SOURCES, 2006, 159 (02) :1169-1185
[8]   Design and partial load exergy analysis of hybrid SOFC-GT power plant [J].
Calise, F. ;
Palombo, A. ;
Vanoli, L. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :225-244
[9]   Full load and part-load performance prediction for integrated SOFC and microturbine systems [J].
Campanari, S .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2000, 122 (02) :239-246
[10]   Multi-level modeling of SOFC-gas turbine hybrid system [J].
Chan, SH ;
Ho, HK ;
Tian, Y .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (08) :889-900