Deep Learning-Based Socio-Demographic Information Identification From Smart Meter Data

被引:146
作者
Wang, Yi [1 ]
Chen, Qixin [1 ]
Gan, Dahua [1 ]
Yang, Jingwei [1 ]
Kirschen, Daniel S. [2 ]
Kang, Chongqing [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
[2] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
基金
中国国家自然科学基金;
关键词
Convolutional neural network (CNN); deep learning; support vector machine (SVM); socio-demographic information; smart meter; big data; classification; DEMAND RESPONSE; NEURAL-NETWORKS;
D O I
10.1109/TSG.2018.2805723
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Smart meters provide large amounts of data and the value of this data is getting increased attention because a better understanding of the characteristics of consumers helps utilities and retailers implement more effective demand response programs and more personalized services. This paper investigates how such characteristics can be inferred from fine-grained smart meter data. A deep convolutional neural network (CNN) first automatically extracts features from massive load profiles. A support vector machine then identifies the characteristics of the consumers. Comprehensive comparisons with state-of-the-art and advanced machine learning techniques are conducted. Case studies on an Irish dataset demonstrate the effectiveness of the proposed deep CNN-based method, which achieves higher accuracy in identifying the socio-demographic information about the consumers.
引用
收藏
页码:2593 / 2602
页数:10
相关论文
共 44 条
[1]  
Abadi M., 2015, P 12 USENIX S OPERAT
[2]  
Beckel Christian, 2013, P 4 INT C FUT EN SYS, P75, DOI 10.1145/2487166.2487175
[3]   Forecasting Uncertainty in Electricity Smart Meter Data by Boosting Additive Quantile Regression [J].
Ben Taieb, Souhaib ;
Huser, Raphael ;
Hyndman, Rob J. ;
Genton, Marc G. .
IEEE TRANSACTIONS ON SMART GRID, 2016, 7 (05) :2448-2455
[4]  
Bengio Yoshua, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P437, DOI 10.1007/978-3-642-35289-8_26
[5]  
Boureau Y. L., 2010, P 27 INT C MACH LEAR, P111
[6]   From demand response to transactive energy: state of the art [J].
Chen, Sijie ;
Liu, Chen-Ching .
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2017, 5 (01) :10-19
[7]   Optimal Opt-In Residential Time-of-Use Contract Based on Principal-Agent Theory [J].
Chen, Sijie ;
Love, H. Alan ;
Liu, Chen-Ching .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (06) :4415-4426
[8]  
Chicco G, 2016, INT CONF EXPO ELECTR, P771, DOI 10.1109/ICEPE.2016.7781443
[9]  
Chollet F., 2015, Keras
[10]   Support vector machine classification and validation of cancer tissue samples using microarray expression data [J].
Furey, TS ;
Cristianini, N ;
Duffy, N ;
Bednarski, DW ;
Schummer, M ;
Haussler, D .
BIOINFORMATICS, 2000, 16 (10) :906-914