Two-stream spatial-temporal neural networks for pose-based action recognition

被引:2
|
作者
Wang, Zixuan [1 ]
Zhu, Aichun [1 ,2 ]
Hu, Fangqiang [1 ]
Wu, Qianyu [1 ]
Li, Yifeng [1 ]
机构
[1] Nanjing Tech Univ, Sch Comp Sci & Technol, Nanjing, Peoples R China
[2] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
action recognition; pose estimation; convolutional neural network; long short-term memory;
D O I
10.1117/1.JEI.29.4.043025
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With recent advances in human pose estimation and human skeleton capture systems, pose-based action recognition has drawn lots of attention among researchers. Although most existing action recognition methods are based on convolutional neural network and long short-term memory, which present outstanding performance, one of the shortcomings of these methods is that they lack the ability to explicitly exploit the rich spatial-temporal information between the skeletons in the behavior, so they are not conducive to improving the accuracy of action recognition. To better address this issue, the two-stream spatial-temporal neural networks for pose-based action recognition is introduced. First, the pose features that are extracted from the raw video are processed by an action modeling module. Then, the temporal information and the spatial information, in the form of relative speed and relative distance, are fed into the temporal neural network and the spatial neural network, respectively. Afterward, the outputs of two-stream networks are fused for better action recognition. Finally, we perform comprehensive experiments on the SUB-JHMDB, SYSU, MPII-Cooking, and NTU RGB+D datasets, the results of which demonstrate the effectiveness of the proposed model. (C) 2020 SPIE and IS&T
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Spatial-temporal interaction learning based two-stream network for action recognition
    Liu, Tianyu
    Ma, Yujun
    Yang, Wenhan
    Ji, Wanting
    Wang, Ruili
    Jiang, Ping
    INFORMATION SCIENCES, 2022, 606 : 864 - 876
  • [2] Spatial-temporal multiscale feature optimization based two-stream convolutional neural network for action recognition
    Xia, Limin
    Fu, Weiye
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (08): : 11611 - 11626
  • [3] Spatial-Temporal Neural Networks for Action Recognition
    Jing, Chao
    Wei, Ping
    Sun, Hongbin
    Zheng, Nanning
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2018, 2018, 519 : 619 - 627
  • [4] Pose-based multisource networks using convolutional neural network and long short-term memory for action recognition
    Hu, Fangqiang
    Wu, Qianyu
    Zhang, Sai
    Zhu, Aichun
    Wang, Zixuan
    Bao, Yaping
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (04)
  • [5] Two-Stream Temporal Convolutional Networks for Skeleton-Based Human Action Recognition
    Jia, Jin-Gong
    Zhou, Yuan-Feng
    Hao, Xing-Wei
    Li, Feng
    Desrosiers, Christian
    Zhang, Cai-Ming
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2020, 35 (03) : 538 - 550
  • [6] Two-Stream Temporal Convolutional Networks for Skeleton-Based Human Action Recognition
    Jin-Gong Jia
    Yuan-Feng Zhou
    Xing-Wei Hao
    Feng Li
    Christian Desrosiers
    Cai-Ming Zhang
    Journal of Computer Science and Technology, 2020, 35 : 538 - 550
  • [7] Spatial-Temporal Attention Two-Stream Convolution Neural Network for Smoke Region Detection
    Ding, Zhipeng
    Zhao, Yaqin
    Li, Ao
    Zheng, Zhaoxiang
    FIRE-SWITZERLAND, 2021, 4 (04):
  • [8] Hidden Two-Stream Convolutional Networks for Action Recognition
    Zhu, Yi
    Lan, Zhenzhong
    Newsam, Shawn
    Hauptmann, Alexander
    COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 : 363 - 378
  • [9] Combining Pose and Trajectory for Skeleton Based Action Recognition using Two-Stream RNN
    Pan, Ge
    Song, YongHong
    Wei, ShengHua
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4375 - 4380
  • [10] Direction-guided two-stream convolutional neural networks for skeleton-based action recognition
    Benyue Su
    Peng Zhang
    Manzhen Sun
    Min Sheng
    Soft Computing, 2023, 27 : 11833 - 11842