Noisy-as-Clean: Learning Self-Supervised Denoising From Corrupted Image

被引:102
|
作者
Xu, Jun [1 ]
Huang, Yuan [2 ]
Cheng, Ming-Ming [1 ]
Liu, Li [3 ,4 ]
Zhu, Fan [3 ,4 ]
Xu, Zhou [5 ]
Shao, Ling [3 ,4 ]
机构
[1] Nankai Univ, TKLNDST, Coll Comp Sci, Tianjin 300071, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710054, Peoples R China
[3] Inception Inst Artificial Intelligence IIAI, Abu Dhabi, U Arab Emirates
[4] Mohamed Bin Zayed Univ Artificial Intelligence MB, Abu Dhabi, U Arab Emirates
[5] Chongqing Univ, Sch Big Data & Software Engn, Chongqing 400044, Peoples R China
关键词
Noise measurement; Noise reduction; Training; Image denoising; AWGN; Benchmark testing; Electronics packaging; self-supervision; convolutional neural network; SPARSE;
D O I
10.1109/TIP.2020.3026622
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Supervised deep networks have achieved promising performance on image denoising, by learning image priors and noise statistics on plenty pairs of noisy and clean images. Unsupervised denoising networks are trained with only noisy images. However, for an unseen corrupted image, both supervised and unsupervised networks ignore either its particular image prior, the noise statistics, or both. That is, the networks learned from external images inherently suffer from a domain gap problem: the image priors and noise statistics are very different between the training and test images. This problem becomes more clear when dealing with the signal dependent realistic noise. To circumvent this problem, in this work, we propose a novel "Noisy-As-Clean" (NAC) strategy of training self-supervised denoising networks. Specifically, the corrupted test image is directly taken as the "clean" target, while the inputs are synthetic images consisted of this corrupted image and a second yet similar corruption. A simple but useful observation on our NAC is: as long as the noise is weak, it is feasible to learn a self-supervised network only with the corrupted image, approximating the optimal parameters of a supervised network learned with pairs of noisy and clean images. Experiments on synthetic and realistic noise removal demonstrate that, the DnCNN and ResNet networks trained with our self-supervised NAC strategy achieve comparable or better performance than the original ones and previous supervised/unsupervised/self-supervised networks. The code is publicly available at https://github.com/csjunxu/Noisy-As-Clean.
引用
收藏
页码:9316 / 9329
页数:14
相关论文
共 50 条
  • [31] Self-Supervised Learning for Seismic Data Reconstruction and Denoising
    Meng, Fanlei
    Fan, QinYin
    Li, Yue
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [32] Self-supervised learning for effective denoising of flow fields
    Yu, Linqi
    Yousif, Mustafa Z.
    Zhou, Dan
    Zhang, Meng
    Lee, Jung Sub
    Lim, Hee-Chang
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [33] Self-supervised learning for denoising of multidimensional MRI data
    Kang, Beomgu
    Lee, Wonil
    Seo, Hyunseok
    Heo, Hye-Young
    Park, Hyunwook
    MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (05) : 1980 - 1994
  • [34] Self-supervised learning for denoising quasiparticle interference data
    Kuijf, Ilse S.
    Tromp, Willem O.
    Benschop, Tjerk
    Ramones, Nino Philip
    Sulangi, Miguel Antonio
    van Nieuwenburg, Evert P. L.
    Allan, Milan P.
    PHYSICAL REVIEW B, 2025, 111 (03)
  • [35] Self-supervised PET Denoising
    Yie, Si Young
    Kang, Seung Kwan
    Hwang, Donghwi
    Lee, Jae Sung
    NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 54 (06) : 299 - 304
  • [36] A self-supervised CNN for image denoising with self-similarity prior
    Fang, Wenqian
    Li, Hongwei
    2022 16TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP2022), VOL 1, 2022, : 66 - 69
  • [37] Self-supervised PET Denoising
    Si Young Yie
    Seung Kwan Kang
    Donghwi Hwang
    Jae Sung Lee
    Nuclear Medicine and Molecular Imaging, 2020, 54 : 299 - 304
  • [38] STN: Stochastic Triplet Neighboring Approach to Self-supervised Denoising from Limited Noisy Images
    Wan, Bowen
    Shi, Daming
    Liu, Yukun
    MULTIMEDIA MODELING, MMM 2023, PT I, 2023, 13833 : 109 - 120
  • [39] Spatial redundancy transformer for self-supervised fluorescence image denoising
    Li, Xinyang
    Hu, Xiaowan
    Chen, Xingye
    Fan, Jiaqi
    Zhao, Zhifeng
    Wu, Jiamin
    Wang, Haoqian
    Dai, Qionghai
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (12): : 1067 - +
  • [40] Remote sensing image intelligent interpretation: from supervised learning to self-supervised learning
    Tao C.
    Yin Z.
    Zhu Q.
    Li H.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (08): : 1122 - 1134