Emergence of exponentially weighted Lp-norms and Sobolev regularity for the Boltzmann equation

被引:9
作者
Alonso, Ricardo [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Math, Rua Marques Sao Vicente 225,Cardeal Leme 862, Rio De Janeiro, Brazil
关键词
De Giorgi level set method; fractional diffusions; non cutoff Boltzmann; SPATIALLY HOMOGENEOUS BOLTZMANN; ENTROPY DISSIPATION; WEAK SOLUTIONS; BOUNDS;
D O I
10.1080/03605302.2018.1554676
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the homogeneous Boltzmann equation for Maxwell and hard potentials, without cutoff, and study the appearance and propagation of L-p-norms, including polynomial and exponential weights. Propagation of Sobolev regularity with such weights is also considered. Classical and novel ideas are combined to elaborate an elementary argument that proves the result in the full range of integrability and singularity . For the case , we use an adaptation of the classical level set method by De Giorgi. All arguments are performed using the weak formulation which simplifies considerably the technicalities.
引用
收藏
页码:416 / 446
页数:31
相关论文
共 22 条
[1]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[2]   The Boltzmann Equation Without Angular Cutoff in the Whole Space: Qualitative Properties of Solutions [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :599-661
[3]   Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
KYOTO JOURNAL OF MATHEMATICS, 2012, 52 (03) :433-463
[4]   Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :39-123
[5]   Propagation of L1 and L∞ Maxwellian weighted bounds for derivatives of solutions to the homogeneous elastic Boltzmann equation [J].
Alonso, Ricardo J. ;
Gamba, Irene A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (06) :575-595
[6]  
Bobylev A.V, 1988, MATH PHYS REV, V7, P111
[7]  
Bouchut F, 1998, REV MAT IBEROAM, V14, P47
[8]   On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials [J].
Carlen, Eric A. ;
Carvalho, Maria C. ;
Lu, Xuguang .
JOURNAL OF STATISTICAL PHYSICS, 2009, 135 (04) :681-736
[9]   Smoothing Estimates for Boltzmann Equation with Full-Range Interactions: Spatially Homogeneous Case [J].
Chen, Yemin ;
He, Lingbing .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 201 (02) :501-548
[10]  
De Giorgi E., 1957, Mem. Accad. Sci. Torino cl. Sci. Fis. Fat. Nat., V3, P25