Spectral triples of holonomy loops

被引:25
作者
Aastrup, J
Grimstrup, JM
机构
[1] Univ Hannover, Inst Anal, D-30167 Hannover, Germany
[2] NORDITA, DK-2100 Copenhagen, Denmark
[3] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland
关键词
D O I
10.1007/s00220-006-1552-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The machinery of noncommutative geometry is applied to a space of connections. A noncommutative function algebra of loops closely related to holonomy loops is investigated. The space of connections is identified as a projective limit of Lie-groups composed of copies of the gauge group. A spectral triple over the space of connections is obtained by factoring out the diffeomorphism group. The triple consist of equivalence classes of loops acting on a hilbert space of sections in an infinite dimensional Clifford bundle. We find that the Dirac operator acting on this hilbert space does not fully comply with the axioms of a spectral triple.
引用
收藏
页码:657 / 681
页数:25
相关论文
共 13 条
[1]   QUANTIZATION OF DIFFEOMORPHISM INVARIANT THEORIES OF CONNECTIONS WITH LOCAL DEGREES OF FREEDOM [J].
ASHTEKAR, A ;
LEWANDOWSKI, J ;
MAROLF, D ;
MOURAO, J ;
THIEMANN, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6456-6493
[2]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[3]  
Ashtekar A., 1994, Knots and Quantum Gravity
[4]   Universal formula for noncommutative geometry actions: Unification of gravity and the standard model [J].
Chamseddine, AH ;
Connes, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (24) :4868-4871
[5]   THE LOCAL INDEX FORMULA IN NONCOMMUTATIVE GEOMETRY [J].
CONNES, A ;
MOSCOVICI, H .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) :174-243
[6]   Gravity coupled with matter and the foundation of non-commutative geometry [J].
Connes, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (01) :155-176
[7]  
Connes A., 1991, Nuclear Physics B, Proceedings Supplements, V18B, P29, DOI 10.1016/0920-5632(91)90120-4
[8]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[9]   Separable Hilbert space in loop quantum gravity [J].
Fairbairn, W ;
Rovelli, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (07) :2802-2814
[10]  
Gelfand I. M., 1943, MAT SBORNIK, V12, P197