Bearing capacity on sand overlying clay: An analytical model for predicting post peak behaviour

被引:12
作者
Hu, Pan [1 ]
Cassidy, Mark J.
Randolph, Mark F.
机构
[1] Univ Western Australia, Ctr Offshore Fdn Syst, 35 Stirling Highway, Perth, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
Bearing capacity; Centrifuge modelling; Spudcan; Offshore engineering; Sand; Clay; SPUDCAN; PENETRATION; MECHANISMS; PROFILE;
D O I
10.1016/j.marstruc.2018.01.004
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
New analytical models have recently been presented for evaluating the peak bearing capacity of circular footings penetrating sand-over-clay and the subsequent capacity once embedded in the underlying clay. However, in lieu of any analytical model, current methods of analysis use an inaccurate linear interpolation for the bearing capacity between the peak and the clay surface. This paper proposes an analytical model for calculating the bearing capacity of circular footings after the peak failure in sand-over-clay soils and before the footing enters the clay. Based on observations from visualisation experiments conducted in a geotechnical centrifuge, and consistent with the silo analysis approach used in predicting the peak capacity, the failure mechanism is a vertical frustum of sand progressively being forced into the underlying clay. Analysis of the capability of the new model to retrospectively simulate a database of 66 geotechnical centrifuge tests is provided. Motivation for improved prediction methods comes from the offshore mobile jack-up industry where concerns remain over the punch-through of large 20 m diameter spudcan footings in sand-over-clay. Accurate prediction of not just the peak bearing capacity but the subsequent load-displacement behaviour is required in order to assess the effectiveness of operational methods used to mitigate punch-through incidents.
引用
收藏
页码:94 / 104
页数:11
相关论文
共 25 条
[1]  
[Anonymous], 2009, THESIS
[2]  
[Anonymous], 2013, P 14 INT C JACK UP P
[3]  
[Anonymous], 2002, PROC INT C OFFSHORE
[4]   Experimental Investigation of the Reinstallation of Spudcan Footings Close to Existing Footprints [J].
Cassidy, Mark J. ;
Quah, Chin Kau ;
Foo, Kok Seng .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2009, 135 (04) :474-486
[5]  
Dean E.T., 2010, Offshore Geotechnical Engineering: Principles and Practice
[6]   LIMIT LOAD IN TRANSLATIONAL FAILURE MECHANISMS FOR ASSOCIATIVE AND NONASSOCIATIVE MATERIALS [J].
DRESCHER, A ;
DETOURNAY, E .
GEOTECHNIQUE, 1993, 43 (03) :443-456
[7]   Assessing the punch-through hazard of a spudcan on sand overlying clay [J].
Hu, P. ;
Wang, D. ;
Stanier, S. A. ;
Cassidy, M. J. .
GEOTECHNIQUE, 2015, 65 (11) :883-896
[8]   A comparison of full profile prediction methods for a spudcan penetrating sand overlying clay [J].
Hu, P. ;
Stanier, S. A. ;
Wang, D. ;
Cassidy, M. J. .
GEOTECHNIQUE LETTERS, 2015, 5 (03) :131-139
[9]   Predicting Peak Resistance of Spudcan Penetrating Sand Overlying Clay [J].
Hu, P. ;
Stanier, S. A. ;
Cassidy, M. J. ;
Wang, D. .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2014, 140 (02)
[10]   Effect of footing shape on penetration in sand overlying clay [J].
Hu, Pan ;
Stanier, Sam A. ;
Wang, Dong ;
Cassidy, Mark J. .
INTERNATIONAL JOURNAL OF PHYSICAL MODELLING IN GEOTECHNICS, 2016, 16 (03) :119-133